Metamath Proof Explorer


Theorem ldualvaddcl

Description: The value of vector addition in the dual of a vector space is a functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvaddcl.f F=LFnlW
ldualvaddcl.d D=LDualW
ldualvaddcl.p +˙=+D
ldualvaddcl.w φWLMod
ldualvaddcl.g φGF
ldualvaddcl.h φHF
Assertion ldualvaddcl φG+˙HF

Proof

Step Hyp Ref Expression
1 ldualvaddcl.f F=LFnlW
2 ldualvaddcl.d D=LDualW
3 ldualvaddcl.p +˙=+D
4 ldualvaddcl.w φWLMod
5 ldualvaddcl.g φGF
6 ldualvaddcl.h φHF
7 eqid ScalarW=ScalarW
8 eqid +ScalarW=+ScalarW
9 1 7 8 2 3 4 5 6 ldualvadd φG+˙H=G+ScalarWfH
10 7 8 1 4 5 6 lfladdcl φG+ScalarWfHF
11 9 10 eqeltrd φG+˙HF