Metamath Proof Explorer


Theorem ldualvaddcl

Description: The value of vector addition in the dual of a vector space is a functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvaddcl.f F = LFnl W
ldualvaddcl.d D = LDual W
ldualvaddcl.p + ˙ = + D
ldualvaddcl.w φ W LMod
ldualvaddcl.g φ G F
ldualvaddcl.h φ H F
Assertion ldualvaddcl φ G + ˙ H F

Proof

Step Hyp Ref Expression
1 ldualvaddcl.f F = LFnl W
2 ldualvaddcl.d D = LDual W
3 ldualvaddcl.p + ˙ = + D
4 ldualvaddcl.w φ W LMod
5 ldualvaddcl.g φ G F
6 ldualvaddcl.h φ H F
7 eqid Scalar W = Scalar W
8 eqid + Scalar W = + Scalar W
9 1 7 8 2 3 4 5 6 ldualvadd φ G + ˙ H = G + Scalar W f H
10 7 8 1 4 5 6 lfladdcl φ G + Scalar W f H F
11 9 10 eqeltrd φ G + ˙ H F