Metamath Proof Explorer


Theorem ldualvaddval

Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses ldualvaddval.v V=BaseW
ldualvaddval.r R=ScalarW
ldualvaddval.a +˙=+R
ldualvaddval.f F=LFnlW
ldualvaddval.d D=LDualW
ldualvaddval.p ˙=+D
ldualvaddval.w φWLMod
ldualvaddval.g φGF
ldualvaddval.h φHF
ldualvaddval.x φXV
Assertion ldualvaddval φG˙HX=GX+˙HX

Proof

Step Hyp Ref Expression
1 ldualvaddval.v V=BaseW
2 ldualvaddval.r R=ScalarW
3 ldualvaddval.a +˙=+R
4 ldualvaddval.f F=LFnlW
5 ldualvaddval.d D=LDualW
6 ldualvaddval.p ˙=+D
7 ldualvaddval.w φWLMod
8 ldualvaddval.g φGF
9 ldualvaddval.h φHF
10 ldualvaddval.x φXV
11 4 2 3 5 6 7 8 9 ldualvadd φG˙H=G+˙fH
12 11 fveq1d φG˙HX=G+˙fHX
13 eqid BaseR=BaseR
14 2 13 1 4 lflf WLModGFG:VBaseR
15 14 ffnd WLModGFGFnV
16 7 8 15 syl2anc φGFnV
17 2 13 1 4 lflf WLModHFH:VBaseR
18 17 ffnd WLModHFHFnV
19 7 9 18 syl2anc φHFnV
20 1 fvexi VV
21 20 a1i φVV
22 inidm VV=V
23 eqidd φXVGX=GX
24 eqidd φXVHX=HX
25 16 19 21 21 22 23 24 ofval φXVG+˙fHX=GX+˙HX
26 10 25 mpdan φG+˙fHX=GX+˙HX
27 12 26 eqtrd φG˙HX=GX+˙HX