Metamath Proof Explorer


Theorem ldualvaddval

Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses ldualvaddval.v 𝑉 = ( Base ‘ 𝑊 )
ldualvaddval.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualvaddval.a + = ( +g𝑅 )
ldualvaddval.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualvaddval.d 𝐷 = ( LDual ‘ 𝑊 )
ldualvaddval.p = ( +g𝐷 )
ldualvaddval.w ( 𝜑𝑊 ∈ LMod )
ldualvaddval.g ( 𝜑𝐺𝐹 )
ldualvaddval.h ( 𝜑𝐻𝐹 )
ldualvaddval.x ( 𝜑𝑋𝑉 )
Assertion ldualvaddval ( 𝜑 → ( ( 𝐺 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺𝑋 ) + ( 𝐻𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 ldualvaddval.v 𝑉 = ( Base ‘ 𝑊 )
2 ldualvaddval.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldualvaddval.a + = ( +g𝑅 )
4 ldualvaddval.f 𝐹 = ( LFnl ‘ 𝑊 )
5 ldualvaddval.d 𝐷 = ( LDual ‘ 𝑊 )
6 ldualvaddval.p = ( +g𝐷 )
7 ldualvaddval.w ( 𝜑𝑊 ∈ LMod )
8 ldualvaddval.g ( 𝜑𝐺𝐹 )
9 ldualvaddval.h ( 𝜑𝐻𝐹 )
10 ldualvaddval.x ( 𝜑𝑋𝑉 )
11 4 2 3 5 6 7 8 9 ldualvadd ( 𝜑 → ( 𝐺 𝐻 ) = ( 𝐺f + 𝐻 ) )
12 11 fveq1d ( 𝜑 → ( ( 𝐺 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺f + 𝐻 ) ‘ 𝑋 ) )
13 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
14 2 13 1 4 lflf ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) )
15 14 ffnd ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → 𝐺 Fn 𝑉 )
16 7 8 15 syl2anc ( 𝜑𝐺 Fn 𝑉 )
17 2 13 1 4 lflf ( ( 𝑊 ∈ LMod ∧ 𝐻𝐹 ) → 𝐻 : 𝑉 ⟶ ( Base ‘ 𝑅 ) )
18 17 ffnd ( ( 𝑊 ∈ LMod ∧ 𝐻𝐹 ) → 𝐻 Fn 𝑉 )
19 7 9 18 syl2anc ( 𝜑𝐻 Fn 𝑉 )
20 1 fvexi 𝑉 ∈ V
21 20 a1i ( 𝜑𝑉 ∈ V )
22 inidm ( 𝑉𝑉 ) = 𝑉
23 eqidd ( ( 𝜑𝑋𝑉 ) → ( 𝐺𝑋 ) = ( 𝐺𝑋 ) )
24 eqidd ( ( 𝜑𝑋𝑉 ) → ( 𝐻𝑋 ) = ( 𝐻𝑋 ) )
25 16 19 21 21 22 23 24 ofval ( ( 𝜑𝑋𝑉 ) → ( ( 𝐺f + 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺𝑋 ) + ( 𝐻𝑋 ) ) )
26 10 25 mpdan ( 𝜑 → ( ( 𝐺f + 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺𝑋 ) + ( 𝐻𝑋 ) ) )
27 12 26 eqtrd ( 𝜑 → ( ( 𝐺 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺𝑋 ) + ( 𝐻𝑋 ) ) )