Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvaddval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ldualvaddval.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
ldualvaddval.a |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
ldualvaddval.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
5 |
|
ldualvaddval.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
6 |
|
ldualvaddval.p |
⊢ ✚ = ( +g ‘ 𝐷 ) |
7 |
|
ldualvaddval.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
ldualvaddval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
ldualvaddval.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
10 |
|
ldualvaddval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
11 |
4 2 3 5 6 7 8 9
|
ldualvadd |
⊢ ( 𝜑 → ( 𝐺 ✚ 𝐻 ) = ( 𝐺 ∘f + 𝐻 ) ) |
12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ✚ 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑋 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
14 |
2 13 1 4
|
lflf |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
14
|
ffnd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐺 Fn 𝑉 ) |
16 |
7 8 15
|
syl2anc |
⊢ ( 𝜑 → 𝐺 Fn 𝑉 ) |
17 |
2 13 1 4
|
lflf |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ) → 𝐻 : 𝑉 ⟶ ( Base ‘ 𝑅 ) ) |
18 |
17
|
ffnd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ) → 𝐻 Fn 𝑉 ) |
19 |
7 9 18
|
syl2anc |
⊢ ( 𝜑 → 𝐻 Fn 𝑉 ) |
20 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
22 |
|
inidm |
⊢ ( 𝑉 ∩ 𝑉 ) = 𝑉 |
23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑋 ) = ( 𝐻 ‘ 𝑋 ) ) |
25 |
16 19 21 21 22 23 24
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) + ( 𝐻 ‘ 𝑋 ) ) ) |
26 |
10 25
|
mpdan |
⊢ ( 𝜑 → ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) + ( 𝐻 ‘ 𝑋 ) ) ) |
27 |
12 26
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 ✚ 𝐻 ) ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) + ( 𝐻 ‘ 𝑋 ) ) ) |