Metamath Proof Explorer


Theorem ldualvsub

Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses ldualvsub.r R=ScalarW
ldualvsub.n N=invgR
ldualvsub.u 1˙=1R
ldualvsub.f F=LFnlW
ldualvsub.d D=LDualW
ldualvsub.p +˙=+D
ldualvsub.t ·˙=D
ldualvsub.m -˙=-D
ldualvsub.w φWLMod
ldualvsub.g φGF
ldualvsub.h φHF
Assertion ldualvsub φG-˙H=G+˙N1˙·˙H

Proof

Step Hyp Ref Expression
1 ldualvsub.r R=ScalarW
2 ldualvsub.n N=invgR
3 ldualvsub.u 1˙=1R
4 ldualvsub.f F=LFnlW
5 ldualvsub.d D=LDualW
6 ldualvsub.p +˙=+D
7 ldualvsub.t ·˙=D
8 ldualvsub.m -˙=-D
9 ldualvsub.w φWLMod
10 ldualvsub.g φGF
11 ldualvsub.h φHF
12 5 9 lduallmod φDLMod
13 eqid BaseD=BaseD
14 4 5 13 9 10 ldualelvbase φGBaseD
15 4 5 13 9 11 ldualelvbase φHBaseD
16 eqid ScalarD=ScalarD
17 eqid invgScalarD=invgScalarD
18 eqid 1ScalarD=1ScalarD
19 13 6 8 16 7 17 18 lmodvsubval2 DLModGBaseDHBaseDG-˙H=G+˙invgScalarD1ScalarD·˙H
20 12 14 15 19 syl3anc φG-˙H=G+˙invgScalarD1ScalarD·˙H
21 eqid opprR=opprR
22 21 2 opprneg N=invgopprR
23 1 21 5 16 9 ldualsca φScalarD=opprR
24 23 fveq2d φinvgScalarD=invgopprR
25 22 24 eqtr4id φN=invgScalarD
26 21 3 oppr1 1˙=1opprR
27 23 fveq2d φ1ScalarD=1opprR
28 26 27 eqtr4id φ1˙=1ScalarD
29 25 28 fveq12d φN1˙=invgScalarD1ScalarD
30 29 oveq1d φN1˙·˙H=invgScalarD1ScalarD·˙H
31 30 oveq2d φG+˙N1˙·˙H=G+˙invgScalarD1ScalarD·˙H
32 20 31 eqtr4d φG-˙H=G+˙N1˙·˙H