Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
ldualelvbase
Metamath Proof Explorer
Description: Utility theorem for converting a functional to a vector of the dual
space in order to use standard vector theorems. (Contributed by NM , 6-Jan-2015)
Ref
Expression
Hypotheses
ldualelvbase.f
⊢ F = LFnl ⁡ W
ldualelvbase.d
⊢ D = LDual ⁡ W
ldualelvbase.v
⊢ V = Base D
ldualelvbase.w
⊢ φ → W ∈ X
ldualelvbase.g
⊢ φ → G ∈ F
Assertion
ldualelvbase
⊢ φ → G ∈ V
Proof
Step
Hyp
Ref
Expression
1
ldualelvbase.f
⊢ F = LFnl ⁡ W
2
ldualelvbase.d
⊢ D = LDual ⁡ W
3
ldualelvbase.v
⊢ V = Base D
4
ldualelvbase.w
⊢ φ → W ∈ X
5
ldualelvbase.g
⊢ φ → G ∈ F
6
1 2 3 4
ldualvbase
⊢ φ → V = F
7
5 6
eleqtrrd
⊢ φ → G ∈ V