Metamath Proof Explorer


Theorem ldualelvbase

Description: Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015)

Ref Expression
Hypotheses ldualelvbase.f F=LFnlW
ldualelvbase.d D=LDualW
ldualelvbase.v V=BaseD
ldualelvbase.w φWX
ldualelvbase.g φGF
Assertion ldualelvbase φGV

Proof

Step Hyp Ref Expression
1 ldualelvbase.f F=LFnlW
2 ldualelvbase.d D=LDualW
3 ldualelvbase.v V=BaseD
4 ldualelvbase.w φWX
5 ldualelvbase.g φGF
6 1 2 3 4 ldualvbase φV=F
7 5 6 eleqtrrd φGV