Metamath Proof Explorer


Theorem ldualelvbase

Description: Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015)

Ref Expression
Hypotheses ldualelvbase.f F = LFnl W
ldualelvbase.d D = LDual W
ldualelvbase.v V = Base D
ldualelvbase.w φ W X
ldualelvbase.g φ G F
Assertion ldualelvbase φ G V

Proof

Step Hyp Ref Expression
1 ldualelvbase.f F = LFnl W
2 ldualelvbase.d D = LDual W
3 ldualelvbase.v V = Base D
4 ldualelvbase.w φ W X
5 ldualelvbase.g φ G F
6 1 2 3 4 ldualvbase φ V = F
7 5 6 eleqtrrd φ G V