Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsub.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
2 |
|
ldualvsub.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
3 |
|
ldualvsub.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
ldualvsub.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
5 |
|
ldualvsub.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
6 |
|
ldualvsub.p |
⊢ + = ( +g ‘ 𝐷 ) |
7 |
|
ldualvsub.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
8 |
|
ldualvsub.m |
⊢ − = ( -g ‘ 𝐷 ) |
9 |
|
ldualvsub.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
10 |
|
ldualvsub.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
11 |
|
ldualvsub.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
12 |
5 9
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
14 |
4 5 13 9 10
|
ldualelvbase |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝐷 ) ) |
15 |
4 5 13 9 11
|
ldualelvbase |
⊢ ( 𝜑 → 𝐻 ∈ ( Base ‘ 𝐷 ) ) |
16 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
17 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝐷 ) ) = ( invg ‘ ( Scalar ‘ 𝐷 ) ) |
18 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐷 ) ) = ( 1r ‘ ( Scalar ‘ 𝐷 ) ) |
19 |
13 6 8 16 7 17 18
|
lmodvsubval2 |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ∧ 𝐻 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐺 − 𝐻 ) = ( 𝐺 + ( ( ( invg ‘ ( Scalar ‘ 𝐷 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐷 ) ) ) · 𝐻 ) ) ) |
20 |
12 14 15 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 − 𝐻 ) = ( 𝐺 + ( ( ( invg ‘ ( Scalar ‘ 𝐷 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐷 ) ) ) · 𝐻 ) ) ) |
21 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
22 |
21 2
|
opprneg |
⊢ 𝑁 = ( invg ‘ ( oppr ‘ 𝑅 ) ) |
23 |
1 21 5 16 9
|
ldualsca |
⊢ ( 𝜑 → ( Scalar ‘ 𝐷 ) = ( oppr ‘ 𝑅 ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( invg ‘ ( Scalar ‘ 𝐷 ) ) = ( invg ‘ ( oppr ‘ 𝑅 ) ) ) |
25 |
22 24
|
eqtr4id |
⊢ ( 𝜑 → 𝑁 = ( invg ‘ ( Scalar ‘ 𝐷 ) ) ) |
26 |
21 3
|
oppr1 |
⊢ 1 = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
27 |
23
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐷 ) ) = ( 1r ‘ ( oppr ‘ 𝑅 ) ) ) |
28 |
26 27
|
eqtr4id |
⊢ ( 𝜑 → 1 = ( 1r ‘ ( Scalar ‘ 𝐷 ) ) ) |
29 |
25 28
|
fveq12d |
⊢ ( 𝜑 → ( 𝑁 ‘ 1 ) = ( ( invg ‘ ( Scalar ‘ 𝐷 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐷 ) ) ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 1 ) · 𝐻 ) = ( ( ( invg ‘ ( Scalar ‘ 𝐷 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐷 ) ) ) · 𝐻 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 + ( ( 𝑁 ‘ 1 ) · 𝐻 ) ) = ( 𝐺 + ( ( ( invg ‘ ( Scalar ‘ 𝐷 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐷 ) ) ) · 𝐻 ) ) ) |
32 |
20 31
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐺 − 𝐻 ) = ( 𝐺 + ( ( 𝑁 ‘ 1 ) · 𝐻 ) ) ) |