Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsubval.v |
|
2 |
|
ldualvsubval.r |
|
3 |
|
ldualvsubval.s |
|
4 |
|
ldualvsubval.f |
|
5 |
|
ldualvsubval.d |
|
6 |
|
ldualvsubval.m |
|
7 |
|
ldualvsubval.w |
|
8 |
|
ldualvsubval.g |
|
9 |
|
ldualvsubval.h |
|
10 |
|
ldualvsubval.x |
|
11 |
5 7
|
lduallmod |
|
12 |
|
eqid |
|
13 |
4 5 12 7 8
|
ldualelvbase |
|
14 |
4 5 12 7 9
|
ldualelvbase |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
12 15 6 16 17 18 19
|
lmodvsubval2 |
|
21 |
11 13 14 20
|
syl3anc |
|
22 |
21
|
fveq1d |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
16
|
lmodfgrp |
|
26 |
11 25
|
syl |
|
27 |
16
|
lmodring |
|
28 |
11 27
|
syl |
|
29 |
|
eqid |
|
30 |
29 19
|
ringidcl |
|
31 |
28 30
|
syl |
|
32 |
29 18
|
grpinvcl |
|
33 |
26 31 32
|
syl2anc |
|
34 |
2 24 5 16 29 7
|
ldualsbase |
|
35 |
33 34
|
eleqtrd |
|
36 |
4 2 24 5 17 7 35 9
|
ldualvscl |
|
37 |
1 2 23 4 5 15 7 8 36 10
|
ldualvaddval |
|
38 |
|
eqid |
|
39 |
2 38 5 16 18 7
|
ldualneg |
|
40 |
|
eqid |
|
41 |
2 40 5 16 19 7
|
ldual1 |
|
42 |
39 41
|
fveq12d |
|
43 |
42
|
oveq1d |
|
44 |
43
|
fveq1d |
|
45 |
|
eqid |
|
46 |
2
|
lmodring |
|
47 |
7 46
|
syl |
|
48 |
|
ringgrp |
|
49 |
47 48
|
syl |
|
50 |
2 24 40
|
lmod1cl |
|
51 |
7 50
|
syl |
|
52 |
24 38
|
grpinvcl |
|
53 |
49 51 52
|
syl2anc |
|
54 |
4 1 2 24 45 5 17 7 53 9 10
|
ldualvsval |
|
55 |
2 24 1 4
|
lflcl |
|
56 |
7 9 10 55
|
syl3anc |
|
57 |
24 45 40 38 47 56
|
rngnegr |
|
58 |
44 54 57
|
3eqtrd |
|
59 |
58
|
oveq2d |
|
60 |
2 24 1 4
|
lflcl |
|
61 |
7 8 10 60
|
syl3anc |
|
62 |
24 23 38 3
|
grpsubval |
|
63 |
61 56 62
|
syl2anc |
|
64 |
59 63
|
eqtr4d |
|
65 |
22 37 64
|
3eqtrd |
|