| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvsubval.v |
|
| 2 |
|
ldualvsubval.r |
|
| 3 |
|
ldualvsubval.s |
|
| 4 |
|
ldualvsubval.f |
|
| 5 |
|
ldualvsubval.d |
|
| 6 |
|
ldualvsubval.m |
|
| 7 |
|
ldualvsubval.w |
|
| 8 |
|
ldualvsubval.g |
|
| 9 |
|
ldualvsubval.h |
|
| 10 |
|
ldualvsubval.x |
|
| 11 |
5 7
|
lduallmod |
|
| 12 |
|
eqid |
|
| 13 |
4 5 12 7 8
|
ldualelvbase |
|
| 14 |
4 5 12 7 9
|
ldualelvbase |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
12 15 6 16 17 18 19
|
lmodvsubval2 |
|
| 21 |
11 13 14 20
|
syl3anc |
|
| 22 |
21
|
fveq1d |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
16
|
lmodfgrp |
|
| 26 |
11 25
|
syl |
|
| 27 |
16
|
lmodring |
|
| 28 |
11 27
|
syl |
|
| 29 |
|
eqid |
|
| 30 |
29 19
|
ringidcl |
|
| 31 |
28 30
|
syl |
|
| 32 |
29 18
|
grpinvcl |
|
| 33 |
26 31 32
|
syl2anc |
|
| 34 |
2 24 5 16 29 7
|
ldualsbase |
|
| 35 |
33 34
|
eleqtrd |
|
| 36 |
4 2 24 5 17 7 35 9
|
ldualvscl |
|
| 37 |
1 2 23 4 5 15 7 8 36 10
|
ldualvaddval |
|
| 38 |
|
eqid |
|
| 39 |
2 38 5 16 18 7
|
ldualneg |
|
| 40 |
|
eqid |
|
| 41 |
2 40 5 16 19 7
|
ldual1 |
|
| 42 |
39 41
|
fveq12d |
|
| 43 |
42
|
oveq1d |
|
| 44 |
43
|
fveq1d |
|
| 45 |
|
eqid |
|
| 46 |
2
|
lmodring |
|
| 47 |
7 46
|
syl |
|
| 48 |
|
ringgrp |
|
| 49 |
47 48
|
syl |
|
| 50 |
2 24 40
|
lmod1cl |
|
| 51 |
7 50
|
syl |
|
| 52 |
24 38
|
grpinvcl |
|
| 53 |
49 51 52
|
syl2anc |
|
| 54 |
4 1 2 24 45 5 17 7 53 9 10
|
ldualvsval |
|
| 55 |
2 24 1 4
|
lflcl |
|
| 56 |
7 9 10 55
|
syl3anc |
|
| 57 |
24 45 40 38 47 56
|
ringnegr |
|
| 58 |
44 54 57
|
3eqtrd |
|
| 59 |
58
|
oveq2d |
|
| 60 |
2 24 1 4
|
lflcl |
|
| 61 |
7 8 10 60
|
syl3anc |
|
| 62 |
24 23 38 3
|
grpsubval |
|
| 63 |
61 56 62
|
syl2anc |
|
| 64 |
59 63
|
eqtr4d |
|
| 65 |
22 37 64
|
3eqtrd |
|