Metamath Proof Explorer


Theorem ldualssvscl

Description: Closure of scalar product in a dual subspace.) (Contributed by NM, 5-Feb-2015)

Ref Expression
Hypotheses ldualssvscl.r R=ScalarW
ldualssvscl.k K=BaseR
ldualssvscl.d D=LDualW
ldualssvscl.t ·˙=D
ldualssvscl.s S=LSubSpD
ldualssvscl.w φWLMod
ldualssvscl.u φUS
ldualssvscl.x φXK
ldualssvscl.y φYU
Assertion ldualssvscl φX·˙YU

Proof

Step Hyp Ref Expression
1 ldualssvscl.r R=ScalarW
2 ldualssvscl.k K=BaseR
3 ldualssvscl.d D=LDualW
4 ldualssvscl.t ·˙=D
5 ldualssvscl.s S=LSubSpD
6 ldualssvscl.w φWLMod
7 ldualssvscl.u φUS
8 ldualssvscl.x φXK
9 ldualssvscl.y φYU
10 3 6 lduallmod φDLMod
11 eqid ScalarD=ScalarD
12 eqid BaseScalarD=BaseScalarD
13 1 2 3 11 12 6 ldualsbase φBaseScalarD=K
14 8 13 eleqtrrd φXBaseScalarD
15 11 4 12 5 lssvscl DLModUSXBaseScalarDYUX·˙YU
16 10 7 14 9 15 syl22anc φX·˙YU