Metamath Proof Explorer


Theorem ldualssvsubcl

Description: Closure of vector subtraction in a dual subspace.) (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses ldualssvsubcl.d D=LDualW
ldualssvsubcl.m -˙=-D
ldualssvsubcl.s S=LSubSpD
ldualssvsubcl.w φWLMod
ldualssvsubcl.u φUS
ldualssvsubcl.x φXU
ldualssvsubcl.y φYU
Assertion ldualssvsubcl φX-˙YU

Proof

Step Hyp Ref Expression
1 ldualssvsubcl.d D=LDualW
2 ldualssvsubcl.m -˙=-D
3 ldualssvsubcl.s S=LSubSpD
4 ldualssvsubcl.w φWLMod
5 ldualssvsubcl.u φUS
6 ldualssvsubcl.x φXU
7 ldualssvsubcl.y φYU
8 1 4 lduallmod φDLMod
9 2 3 lssvsubcl DLModUSXUYUX-˙YU
10 8 5 6 7 9 syl22anc φX-˙YU