Metamath Proof Explorer


Theorem lssvsubcl

Description: Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssvsubcl.m -˙=-W
lssvsubcl.s S=LSubSpW
Assertion lssvsubcl WLModUSXUYUX-˙YU

Proof

Step Hyp Ref Expression
1 lssvsubcl.m -˙=-W
2 lssvsubcl.s S=LSubSpW
3 simpll WLModUSXUYUWLMod
4 eqid BaseW=BaseW
5 4 2 lssel USXUXBaseW
6 5 ad2ant2lr WLModUSXUYUXBaseW
7 4 2 lssel USYUYBaseW
8 7 ad2ant2l WLModUSXUYUYBaseW
9 eqid +W=+W
10 eqid ScalarW=ScalarW
11 eqid W=W
12 eqid invgScalarW=invgScalarW
13 eqid 1ScalarW=1ScalarW
14 4 9 1 10 11 12 13 lmodvsubval2 WLModXBaseWYBaseWX-˙Y=X+WinvgScalarW1ScalarWWY
15 3 6 8 14 syl3anc WLModUSXUYUX-˙Y=X+WinvgScalarW1ScalarWWY
16 10 lmodfgrp WLModScalarWGrp
17 3 16 syl WLModUSXUYUScalarWGrp
18 eqid BaseScalarW=BaseScalarW
19 10 18 13 lmod1cl WLMod1ScalarWBaseScalarW
20 3 19 syl WLModUSXUYU1ScalarWBaseScalarW
21 18 12 grpinvcl ScalarWGrp1ScalarWBaseScalarWinvgScalarW1ScalarWBaseScalarW
22 17 20 21 syl2anc WLModUSXUYUinvgScalarW1ScalarWBaseScalarW
23 4 10 11 18 lmodvscl WLModinvgScalarW1ScalarWBaseScalarWYBaseWinvgScalarW1ScalarWWYBaseW
24 3 22 8 23 syl3anc WLModUSXUYUinvgScalarW1ScalarWWYBaseW
25 4 9 lmodcom WLModXBaseWinvgScalarW1ScalarWWYBaseWX+WinvgScalarW1ScalarWWY=invgScalarW1ScalarWWY+WX
26 3 6 24 25 syl3anc WLModUSXUYUX+WinvgScalarW1ScalarWWY=invgScalarW1ScalarWWY+WX
27 simplr WLModUSXUYUUS
28 simprr WLModUSXUYUYU
29 simprl WLModUSXUYUXU
30 10 18 9 11 2 lsscl USinvgScalarW1ScalarWBaseScalarWYUXUinvgScalarW1ScalarWWY+WXU
31 27 22 28 29 30 syl13anc WLModUSXUYUinvgScalarW1ScalarWWY+WXU
32 26 31 eqeltrd WLModUSXUYUX+WinvgScalarW1ScalarWWYU
33 15 32 eqeltrd WLModUSXUYUX-˙YU