Metamath Proof Explorer


Theorem ldual0vs

Description: Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses ldual0vs.f F=LFnlW
ldual0vs.r R=ScalarW
ldual0vs.z 0˙=0R
ldual0vs.d D=LDualW
ldual0vs.t ·˙=D
ldual0vs.o O=0D
ldual0vs.w φWLMod
ldual0vs.g φGF
Assertion ldual0vs φ0˙·˙G=O

Proof

Step Hyp Ref Expression
1 ldual0vs.f F=LFnlW
2 ldual0vs.r R=ScalarW
3 ldual0vs.z 0˙=0R
4 ldual0vs.d D=LDualW
5 ldual0vs.t ·˙=D
6 ldual0vs.o O=0D
7 ldual0vs.w φWLMod
8 ldual0vs.g φGF
9 eqid ScalarD=ScalarD
10 eqid 0ScalarD=0ScalarD
11 2 3 4 9 10 7 ldual0 φ0ScalarD=0˙
12 11 oveq1d φ0ScalarD·˙G=0˙·˙G
13 4 7 lduallmod φDLMod
14 eqid BaseD=BaseD
15 1 4 14 7 8 ldualelvbase φGBaseD
16 14 9 5 10 6 lmod0vs DLModGBaseD0ScalarD·˙G=O
17 13 15 16 syl2anc φ0ScalarD·˙G=O
18 12 17 eqtr3d φ0˙·˙G=O