Metamath Proof Explorer


Theorem lkr0f2

Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lkr0f2.v V=BaseW
lkr0f2.f F=LFnlW
lkr0f2.k K=LKerW
lkr0f2.d D=LDualW
lkr0f2.o 0˙=0D
lkr0f2.w φWLMod
lkr0f2.g φGF
Assertion lkr0f2 φKG=VG=0˙

Proof

Step Hyp Ref Expression
1 lkr0f2.v V=BaseW
2 lkr0f2.f F=LFnlW
3 lkr0f2.k K=LKerW
4 lkr0f2.d D=LDualW
5 lkr0f2.o 0˙=0D
6 lkr0f2.w φWLMod
7 lkr0f2.g φGF
8 eqid ScalarW=ScalarW
9 eqid 0ScalarW=0ScalarW
10 8 9 1 2 3 lkr0f WLModGFKG=VG=V×0ScalarW
11 6 7 10 syl2anc φKG=VG=V×0ScalarW
12 1 8 9 4 5 6 ldual0v φ0˙=V×0ScalarW
13 12 eqeq2d φG=0˙G=V×0ScalarW
14 11 13 bitr4d φKG=VG=0˙