Metamath Proof Explorer


Theorem lkr0f2

Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lkr0f2.v V = Base W
lkr0f2.f F = LFnl W
lkr0f2.k K = LKer W
lkr0f2.d D = LDual W
lkr0f2.o 0 ˙ = 0 D
lkr0f2.w φ W LMod
lkr0f2.g φ G F
Assertion lkr0f2 φ K G = V G = 0 ˙

Proof

Step Hyp Ref Expression
1 lkr0f2.v V = Base W
2 lkr0f2.f F = LFnl W
3 lkr0f2.k K = LKer W
4 lkr0f2.d D = LDual W
5 lkr0f2.o 0 ˙ = 0 D
6 lkr0f2.w φ W LMod
7 lkr0f2.g φ G F
8 eqid Scalar W = Scalar W
9 eqid 0 Scalar W = 0 Scalar W
10 8 9 1 2 3 lkr0f W LMod G F K G = V G = V × 0 Scalar W
11 6 7 10 syl2anc φ K G = V G = V × 0 Scalar W
12 1 8 9 4 5 6 ldual0v φ 0 ˙ = V × 0 Scalar W
13 12 eqeq2d φ G = 0 ˙ G = V × 0 Scalar W
14 11 13 bitr4d φ K G = V G = 0 ˙