Metamath Proof Explorer


Theorem lduallkr3

Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lduallkr3.h H = LSHyp W
lduallkr3.f F = LFnl W
lduallkr3.k K = LKer W
lduallkr3.d D = LDual W
lduallkr3.o 0 ˙ = 0 D
lduallkr3.w φ W LVec
lduallkr3.g φ G F
Assertion lduallkr3 φ K G H G 0 ˙

Proof

Step Hyp Ref Expression
1 lduallkr3.h H = LSHyp W
2 lduallkr3.f F = LFnl W
3 lduallkr3.k K = LKer W
4 lduallkr3.d D = LDual W
5 lduallkr3.o 0 ˙ = 0 D
6 lduallkr3.w φ W LVec
7 lduallkr3.g φ G F
8 eqid Base W = Base W
9 eqid Scalar W = Scalar W
10 eqid 0 Scalar W = 0 Scalar W
11 8 9 10 1 2 3 6 7 lkrshp3 φ K G H G Base W × 0 Scalar W
12 lveclmod W LVec W LMod
13 6 12 syl φ W LMod
14 8 9 10 4 5 13 ldual0v φ 0 ˙ = Base W × 0 Scalar W
15 14 neeq2d φ G 0 ˙ G Base W × 0 Scalar W
16 11 15 bitr4d φ K G H G 0 ˙