Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
lduallkr3
Next ⟩
lkrpssN
Metamath Proof Explorer
Ascii
Unicode
Theorem
lduallkr3
Description:
The kernels of nonzero functionals are hyperplanes.
(Contributed by
NM
, 22-Feb-2015)
Ref
Expression
Hypotheses
lduallkr3.h
⊢
H
=
LSHyp
⁡
W
lduallkr3.f
⊢
F
=
LFnl
⁡
W
lduallkr3.k
⊢
K
=
LKer
⁡
W
lduallkr3.d
⊢
D
=
LDual
⁡
W
lduallkr3.o
⊢
0
˙
=
0
D
lduallkr3.w
⊢
φ
→
W
∈
LVec
lduallkr3.g
⊢
φ
→
G
∈
F
Assertion
lduallkr3
⊢
φ
→
K
⁡
G
∈
H
↔
G
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
lduallkr3.h
⊢
H
=
LSHyp
⁡
W
2
lduallkr3.f
⊢
F
=
LFnl
⁡
W
3
lduallkr3.k
⊢
K
=
LKer
⁡
W
4
lduallkr3.d
⊢
D
=
LDual
⁡
W
5
lduallkr3.o
⊢
0
˙
=
0
D
6
lduallkr3.w
⊢
φ
→
W
∈
LVec
7
lduallkr3.g
⊢
φ
→
G
∈
F
8
eqid
⊢
Base
W
=
Base
W
9
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
10
eqid
⊢
0
Scalar
⁡
W
=
0
Scalar
⁡
W
11
8
9
10
1
2
3
6
7
lkrshp3
⊢
φ
→
K
⁡
G
∈
H
↔
G
≠
Base
W
×
0
Scalar
⁡
W
12
lveclmod
⊢
W
∈
LVec
→
W
∈
LMod
13
6
12
syl
⊢
φ
→
W
∈
LMod
14
8
9
10
4
5
13
ldual0v
⊢
φ
→
0
˙
=
Base
W
×
0
Scalar
⁡
W
15
14
neeq2d
⊢
φ
→
G
≠
0
˙
↔
G
≠
Base
W
×
0
Scalar
⁡
W
16
11
15
bitr4d
⊢
φ
→
K
⁡
G
∈
H
↔
G
≠
0
˙