Metamath Proof Explorer


Theorem lkrpssN

Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lkrpss.f F = LFnl W
lkrpss.k K = LKer W
lkrpss.d D = LDual W
lkrpss.o 0 ˙ = 0 D
lkrpss.w φ W LVec
lkrpss.g φ G F
lkrpss.h φ H F
Assertion lkrpssN φ K G K H G 0 ˙ H = 0 ˙

Proof

Step Hyp Ref Expression
1 lkrpss.f F = LFnl W
2 lkrpss.k K = LKer W
3 lkrpss.d D = LDual W
4 lkrpss.o 0 ˙ = 0 D
5 lkrpss.w φ W LVec
6 lkrpss.g φ G F
7 lkrpss.h φ H F
8 df-pss K G K H K G K H K G K H
9 simpr φ K G K H K G K H
10 eqid Base W = Base W
11 lveclmod W LVec W LMod
12 5 11 syl φ W LMod
13 10 1 2 12 7 lkrssv φ K H Base W
14 13 adantr φ K G K H K H Base W
15 9 14 psssstrd φ K G K H K G Base W
16 15 pssned φ K G K H K G Base W
17 8 16 sylan2br φ K G K H K G K H K G Base W
18 simplr φ K G K H K H LSHyp W K G K H
19 eqid LSHyp W = LSHyp W
20 5 ad2antrr φ K G K H K H LSHyp W W LVec
21 simpr φ K G K H K H LSHyp W K G LSHyp W K G LSHyp W
22 simplr φ K G K H K H LSHyp W K G = Base W K H LSHyp W
23 13 ad3antrrr φ K G K H K H LSHyp W K G = Base W K H Base W
24 simpr φ K G K H K H LSHyp W K G = Base W K G = Base W
25 simpllr φ K G K H K H LSHyp W K G = Base W K G K H
26 24 25 eqsstrrd φ K G K H K H LSHyp W K G = Base W Base W K H
27 23 26 eqssd φ K G K H K H LSHyp W K G = Base W K H = Base W
28 10 19 1 2 5 7 lkrshp4 φ K H Base W K H LSHyp W
29 28 ad3antrrr φ K G K H K H LSHyp W K G = Base W K H Base W K H LSHyp W
30 29 necon1bbid φ K G K H K H LSHyp W K G = Base W ¬ K H LSHyp W K H = Base W
31 27 30 mpbird φ K G K H K H LSHyp W K G = Base W ¬ K H LSHyp W
32 22 31 pm2.21dd φ K G K H K H LSHyp W K G = Base W K G LSHyp W
33 10 19 1 2 5 6 lkrshpor φ K G LSHyp W K G = Base W
34 33 ad2antrr φ K G K H K H LSHyp W K G LSHyp W K G = Base W
35 21 32 34 mpjaodan φ K G K H K H LSHyp W K G LSHyp W
36 simpr φ K G K H K H LSHyp W K H LSHyp W
37 19 20 35 36 lshpcmp φ K G K H K H LSHyp W K G K H K G = K H
38 18 37 mpbid φ K G K H K H LSHyp W K G = K H
39 38 ex φ K G K H K H LSHyp W K G = K H
40 39 necon3ad φ K G K H K G K H ¬ K H LSHyp W
41 40 impr φ K G K H K G K H ¬ K H LSHyp W
42 28 necon1bbid φ ¬ K H LSHyp W K H = Base W
43 42 adantr φ K G K H K G K H ¬ K H LSHyp W K H = Base W
44 41 43 mpbid φ K G K H K G K H K H = Base W
45 17 44 jca φ K G K H K G K H K G Base W K H = Base W
46 10 1 2 12 6 lkrssv φ K G Base W
47 46 adantr φ K G Base W K H = Base W K G Base W
48 simprr φ K G Base W K H = Base W K H = Base W
49 48 eqcomd φ K G Base W K H = Base W Base W = K H
50 47 49 sseqtrd φ K G Base W K H = Base W K G K H
51 simprl φ K G Base W K H = Base W K G Base W
52 51 49 neeqtrd φ K G Base W K H = Base W K G K H
53 50 52 jca φ K G Base W K H = Base W K G K H K G K H
54 45 53 impbida φ K G K H K G K H K G Base W K H = Base W
55 8 54 syl5bb φ K G K H K G Base W K H = Base W
56 10 1 2 3 4 12 6 lkr0f2 φ K G = Base W G = 0 ˙
57 56 necon3bid φ K G Base W G 0 ˙
58 10 1 2 3 4 12 7 lkr0f2 φ K H = Base W H = 0 ˙
59 57 58 anbi12d φ K G Base W K H = Base W G 0 ˙ H = 0 ˙
60 55 59 bitrd φ K G K H G 0 ˙ H = 0 ˙