Metamath Proof Explorer


Theorem lkrssv

Description: The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lkrssv.v V = Base W
lkrssv.f F = LFnl W
lkrssv.k K = LKer W
lkrssv.w φ W LMod
lkrssv.g φ G F
Assertion lkrssv φ K G V

Proof

Step Hyp Ref Expression
1 lkrssv.v V = Base W
2 lkrssv.f F = LFnl W
3 lkrssv.k K = LKer W
4 lkrssv.w φ W LMod
5 lkrssv.g φ G F
6 eqid LSubSp W = LSubSp W
7 2 3 6 lkrlss W LMod G F K G LSubSp W
8 4 5 7 syl2anc φ K G LSubSp W
9 1 6 lssss K G LSubSp W K G V
10 8 9 syl φ K G V