Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Functionals and kernels of a left vector space (or module)
lkrssv
Next ⟩
lkrsc
Metamath Proof Explorer
Ascii
Unicode
Theorem
lkrssv
Description:
The kernel of a linear functional is a set of vectors.
(Contributed by
NM
, 1-Jan-2015)
Ref
Expression
Hypotheses
lkrssv.v
⊢
V
=
Base
W
lkrssv.f
⊢
F
=
LFnl
⁡
W
lkrssv.k
⊢
K
=
LKer
⁡
W
lkrssv.w
⊢
φ
→
W
∈
LMod
lkrssv.g
⊢
φ
→
G
∈
F
Assertion
lkrssv
⊢
φ
→
K
⁡
G
⊆
V
Proof
Step
Hyp
Ref
Expression
1
lkrssv.v
⊢
V
=
Base
W
2
lkrssv.f
⊢
F
=
LFnl
⁡
W
3
lkrssv.k
⊢
K
=
LKer
⁡
W
4
lkrssv.w
⊢
φ
→
W
∈
LMod
5
lkrssv.g
⊢
φ
→
G
∈
F
6
eqid
⊢
LSubSp
⁡
W
=
LSubSp
⁡
W
7
2
3
6
lkrlss
⊢
W
∈
LMod
∧
G
∈
F
→
K
⁡
G
∈
LSubSp
⁡
W
8
4
5
7
syl2anc
⊢
φ
→
K
⁡
G
∈
LSubSp
⁡
W
9
1
6
lssss
⊢
K
⁡
G
∈
LSubSp
⁡
W
→
K
⁡
G
⊆
V
10
8
9
syl
⊢
φ
→
K
⁡
G
⊆
V