Metamath Proof Explorer


Theorem lkrsc

Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014)

Ref Expression
Hypotheses lkrsc.v V=BaseW
lkrsc.d D=ScalarW
lkrsc.k K=BaseD
lkrsc.t ·˙=D
lkrsc.f F=LFnlW
lkrsc.l L=LKerW
lkrsc.w φWLVec
lkrsc.g φGF
lkrsc.r φRK
lkrsc.o 0˙=0D
lkrsc.e φR0˙
Assertion lkrsc φLG·˙fV×R=LG

Proof

Step Hyp Ref Expression
1 lkrsc.v V=BaseW
2 lkrsc.d D=ScalarW
3 lkrsc.k K=BaseD
4 lkrsc.t ·˙=D
5 lkrsc.f F=LFnlW
6 lkrsc.l L=LKerW
7 lkrsc.w φWLVec
8 lkrsc.g φGF
9 lkrsc.r φRK
10 lkrsc.o 0˙=0D
11 lkrsc.e φR0˙
12 1 fvexi VV
13 12 a1i φVV
14 2 3 1 5 lflf WLVecGFG:VK
15 7 8 14 syl2anc φG:VK
16 15 ffnd φGFnV
17 eqidd φvVGv=Gv
18 13 9 16 17 ofc2 φvVG·˙fV×Rv=Gv·˙R
19 18 eqeq1d φvVG·˙fV×Rv=0˙Gv·˙R=0˙
20 2 lvecdrng WLVecDDivRing
21 7 20 syl φDDivRing
22 21 adantr φvVDDivRing
23 7 adantr φvVWLVec
24 8 adantr φvVGF
25 simpr φvVvV
26 2 3 1 5 lflcl WLVecGFvVGvK
27 23 24 25 26 syl3anc φvVGvK
28 9 adantr φvVRK
29 11 adantr φvVR0˙
30 3 10 4 22 27 28 29 drngmuleq0 φvVGv·˙R=0˙Gv=0˙
31 19 30 bitrd φvVG·˙fV×Rv=0˙Gv=0˙
32 31 pm5.32da φvVG·˙fV×Rv=0˙vVGv=0˙
33 lveclmod WLVecWLMod
34 7 33 syl φWLMod
35 1 2 3 4 5 34 8 9 lflvscl φG·˙fV×RF
36 1 2 10 5 6 ellkr WLVecG·˙fV×RFvLG·˙fV×RvVG·˙fV×Rv=0˙
37 7 35 36 syl2anc φvLG·˙fV×RvVG·˙fV×Rv=0˙
38 1 2 10 5 6 ellkr WLVecGFvLGvVGv=0˙
39 7 8 38 syl2anc φvLGvVGv=0˙
40 32 37 39 3bitr4d φvLG·˙fV×RvLG
41 40 eqrdv φLG·˙fV×R=LG