Metamath Proof Explorer


Theorem ellkr

Description: Membership in the kernel of a functional. ( elnlfn analog.) (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrfval2.v V=BaseW
lkrfval2.d D=ScalarW
lkrfval2.o 0˙=0D
lkrfval2.f F=LFnlW
lkrfval2.k K=LKerW
Assertion ellkr WYGFXKGXVGX=0˙

Proof

Step Hyp Ref Expression
1 lkrfval2.v V=BaseW
2 lkrfval2.d D=ScalarW
3 lkrfval2.o 0˙=0D
4 lkrfval2.f F=LFnlW
5 lkrfval2.k K=LKerW
6 2 3 4 5 lkrval WYGFKG=G-10˙
7 6 eleq2d WYGFXKGXG-10˙
8 eqid BaseD=BaseD
9 2 8 1 4 lflf WYGFG:VBaseD
10 ffn G:VBaseDGFnV
11 elpreima GFnVXG-10˙XVGX0˙
12 9 10 11 3syl WYGFXG-10˙XVGX0˙
13 fvex GXV
14 13 elsn GX0˙GX=0˙
15 14 anbi2i XVGX0˙XVGX=0˙
16 12 15 bitrdi WYGFXG-10˙XVGX=0˙
17 7 16 bitrd WYGFXKGXVGX=0˙