Metamath Proof Explorer


Theorem lkrval2

Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lkrfval2.v V=BaseW
lkrfval2.d D=ScalarW
lkrfval2.o 0˙=0D
lkrfval2.f F=LFnlW
lkrfval2.k K=LKerW
Assertion lkrval2 WXGFKG=xV|Gx=0˙

Proof

Step Hyp Ref Expression
1 lkrfval2.v V=BaseW
2 lkrfval2.d D=ScalarW
3 lkrfval2.o 0˙=0D
4 lkrfval2.f F=LFnlW
5 lkrfval2.k K=LKerW
6 elex WXWV
7 1 2 3 4 5 ellkr WVGFxKGxVGx=0˙
8 7 eqabdv WVGFKG=x|xVGx=0˙
9 df-rab xV|Gx=0˙=x|xVGx=0˙
10 8 9 eqtr4di WVGFKG=xV|Gx=0˙
11 6 10 sylan WXGFKG=xV|Gx=0˙