Metamath Proof Explorer


Theorem lkrval2

Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lkrfval2.v V = Base W
lkrfval2.d D = Scalar W
lkrfval2.o 0 ˙ = 0 D
lkrfval2.f F = LFnl W
lkrfval2.k K = LKer W
Assertion lkrval2 W X G F K G = x V | G x = 0 ˙

Proof

Step Hyp Ref Expression
1 lkrfval2.v V = Base W
2 lkrfval2.d D = Scalar W
3 lkrfval2.o 0 ˙ = 0 D
4 lkrfval2.f F = LFnl W
5 lkrfval2.k K = LKer W
6 elex W X W V
7 1 2 3 4 5 ellkr W V G F x K G x V G x = 0 ˙
8 7 abbi2dv W V G F K G = x | x V G x = 0 ˙
9 df-rab x V | G x = 0 ˙ = x | x V G x = 0 ˙
10 8 9 eqtr4di W V G F K G = x V | G x = 0 ˙
11 6 10 sylan W X G F K G = x V | G x = 0 ˙