Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Functionals and kernels of a left vector space (or module)
ellkr2
Next ⟩
lkrcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ellkr2
Description:
Membership in the kernel of a functional.
(Contributed by
NM
, 12-Jan-2015)
Ref
Expression
Hypotheses
lkrfval2.v
⊢
V
=
Base
W
lkrfval2.d
⊢
D
=
Scalar
⁡
W
lkrfval2.o
⊢
0
˙
=
0
D
lkrfval2.f
⊢
F
=
LFnl
⁡
W
lkrfval2.k
⊢
K
=
LKer
⁡
W
ellkr2.w
⊢
φ
→
W
∈
Y
ellkr2.g
⊢
φ
→
G
∈
F
ellkr2.x
⊢
φ
→
X
∈
V
Assertion
ellkr2
⊢
φ
→
X
∈
K
⁡
G
↔
G
⁡
X
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
lkrfval2.v
⊢
V
=
Base
W
2
lkrfval2.d
⊢
D
=
Scalar
⁡
W
3
lkrfval2.o
⊢
0
˙
=
0
D
4
lkrfval2.f
⊢
F
=
LFnl
⁡
W
5
lkrfval2.k
⊢
K
=
LKer
⁡
W
6
ellkr2.w
⊢
φ
→
W
∈
Y
7
ellkr2.g
⊢
φ
→
G
∈
F
8
ellkr2.x
⊢
φ
→
X
∈
V
9
1
2
3
4
5
ellkr
⊢
W
∈
Y
∧
G
∈
F
→
X
∈
K
⁡
G
↔
X
∈
V
∧
G
⁡
X
=
0
˙
10
6
7
9
syl2anc
⊢
φ
→
X
∈
K
⁡
G
↔
X
∈
V
∧
G
⁡
X
=
0
˙
11
8
biantrurd
⊢
φ
→
G
⁡
X
=
0
˙
↔
X
∈
V
∧
G
⁡
X
=
0
˙
12
10
11
bitr4d
⊢
φ
→
X
∈
K
⁡
G
↔
G
⁡
X
=
0
˙