Metamath Proof Explorer


Theorem ellkr2

Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lkrfval2.v V = Base W
lkrfval2.d D = Scalar W
lkrfval2.o 0 ˙ = 0 D
lkrfval2.f F = LFnl W
lkrfval2.k K = LKer W
ellkr2.w φ W Y
ellkr2.g φ G F
ellkr2.x φ X V
Assertion ellkr2 φ X K G G X = 0 ˙

Proof

Step Hyp Ref Expression
1 lkrfval2.v V = Base W
2 lkrfval2.d D = Scalar W
3 lkrfval2.o 0 ˙ = 0 D
4 lkrfval2.f F = LFnl W
5 lkrfval2.k K = LKer W
6 ellkr2.w φ W Y
7 ellkr2.g φ G F
8 ellkr2.x φ X V
9 1 2 3 4 5 ellkr W Y G F X K G X V G X = 0 ˙
10 6 7 9 syl2anc φ X K G X V G X = 0 ˙
11 8 biantrurd φ G X = 0 ˙ X V G X = 0 ˙
12 10 11 bitr4d φ X K G G X = 0 ˙