Metamath Proof Explorer


Theorem ellkr2

Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lkrfval2.v V=BaseW
lkrfval2.d D=ScalarW
lkrfval2.o 0˙=0D
lkrfval2.f F=LFnlW
lkrfval2.k K=LKerW
ellkr2.w φWY
ellkr2.g φGF
ellkr2.x φXV
Assertion ellkr2 φXKGGX=0˙

Proof

Step Hyp Ref Expression
1 lkrfval2.v V=BaseW
2 lkrfval2.d D=ScalarW
3 lkrfval2.o 0˙=0D
4 lkrfval2.f F=LFnlW
5 lkrfval2.k K=LKerW
6 ellkr2.w φWY
7 ellkr2.g φGF
8 ellkr2.x φXV
9 1 2 3 4 5 ellkr WYGFXKGXVGX=0˙
10 6 7 9 syl2anc φXKGXVGX=0˙
11 8 biantrurd φGX=0˙XVGX=0˙
12 10 11 bitr4d φXKGGX=0˙