Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lkrfval2.v | |- V = ( Base ` W ) |
|
lkrfval2.d | |- D = ( Scalar ` W ) |
||
lkrfval2.o | |- .0. = ( 0g ` D ) |
||
lkrfval2.f | |- F = ( LFnl ` W ) |
||
lkrfval2.k | |- K = ( LKer ` W ) |
||
ellkr2.w | |- ( ph -> W e. Y ) |
||
ellkr2.g | |- ( ph -> G e. F ) |
||
ellkr2.x | |- ( ph -> X e. V ) |
||
Assertion | ellkr2 | |- ( ph -> ( X e. ( K ` G ) <-> ( G ` X ) = .0. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrfval2.v | |- V = ( Base ` W ) |
|
2 | lkrfval2.d | |- D = ( Scalar ` W ) |
|
3 | lkrfval2.o | |- .0. = ( 0g ` D ) |
|
4 | lkrfval2.f | |- F = ( LFnl ` W ) |
|
5 | lkrfval2.k | |- K = ( LKer ` W ) |
|
6 | ellkr2.w | |- ( ph -> W e. Y ) |
|
7 | ellkr2.g | |- ( ph -> G e. F ) |
|
8 | ellkr2.x | |- ( ph -> X e. V ) |
|
9 | 1 2 3 4 5 | ellkr | |- ( ( W e. Y /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = .0. ) ) ) |
10 | 6 7 9 | syl2anc | |- ( ph -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = .0. ) ) ) |
11 | 8 | biantrurd | |- ( ph -> ( ( G ` X ) = .0. <-> ( X e. V /\ ( G ` X ) = .0. ) ) ) |
12 | 10 11 | bitr4d | |- ( ph -> ( X e. ( K ` G ) <-> ( G ` X ) = .0. ) ) |