Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lkrfval2.v | |- V = ( Base ` W ) |
|
| lkrfval2.d | |- D = ( Scalar ` W ) |
||
| lkrfval2.o | |- .0. = ( 0g ` D ) |
||
| lkrfval2.f | |- F = ( LFnl ` W ) |
||
| lkrfval2.k | |- K = ( LKer ` W ) |
||
| ellkr2.w | |- ( ph -> W e. Y ) |
||
| ellkr2.g | |- ( ph -> G e. F ) |
||
| ellkr2.x | |- ( ph -> X e. V ) |
||
| Assertion | ellkr2 | |- ( ph -> ( X e. ( K ` G ) <-> ( G ` X ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrfval2.v | |- V = ( Base ` W ) |
|
| 2 | lkrfval2.d | |- D = ( Scalar ` W ) |
|
| 3 | lkrfval2.o | |- .0. = ( 0g ` D ) |
|
| 4 | lkrfval2.f | |- F = ( LFnl ` W ) |
|
| 5 | lkrfval2.k | |- K = ( LKer ` W ) |
|
| 6 | ellkr2.w | |- ( ph -> W e. Y ) |
|
| 7 | ellkr2.g | |- ( ph -> G e. F ) |
|
| 8 | ellkr2.x | |- ( ph -> X e. V ) |
|
| 9 | 1 2 3 4 5 | ellkr | |- ( ( W e. Y /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = .0. ) ) ) |
| 10 | 6 7 9 | syl2anc | |- ( ph -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = .0. ) ) ) |
| 11 | 8 | biantrurd | |- ( ph -> ( ( G ` X ) = .0. <-> ( X e. V /\ ( G ` X ) = .0. ) ) ) |
| 12 | 10 11 | bitr4d | |- ( ph -> ( X e. ( K ` G ) <-> ( G ` X ) = .0. ) ) |