Metamath Proof Explorer


Theorem ellkr2

Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lkrfval2.v
|- V = ( Base ` W )
lkrfval2.d
|- D = ( Scalar ` W )
lkrfval2.o
|- .0. = ( 0g ` D )
lkrfval2.f
|- F = ( LFnl ` W )
lkrfval2.k
|- K = ( LKer ` W )
ellkr2.w
|- ( ph -> W e. Y )
ellkr2.g
|- ( ph -> G e. F )
ellkr2.x
|- ( ph -> X e. V )
Assertion ellkr2
|- ( ph -> ( X e. ( K ` G ) <-> ( G ` X ) = .0. ) )

Proof

Step Hyp Ref Expression
1 lkrfval2.v
 |-  V = ( Base ` W )
2 lkrfval2.d
 |-  D = ( Scalar ` W )
3 lkrfval2.o
 |-  .0. = ( 0g ` D )
4 lkrfval2.f
 |-  F = ( LFnl ` W )
5 lkrfval2.k
 |-  K = ( LKer ` W )
6 ellkr2.w
 |-  ( ph -> W e. Y )
7 ellkr2.g
 |-  ( ph -> G e. F )
8 ellkr2.x
 |-  ( ph -> X e. V )
9 1 2 3 4 5 ellkr
 |-  ( ( W e. Y /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = .0. ) ) )
10 6 7 9 syl2anc
 |-  ( ph -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = .0. ) ) )
11 8 biantrurd
 |-  ( ph -> ( ( G ` X ) = .0. <-> ( X e. V /\ ( G ` X ) = .0. ) ) )
12 10 11 bitr4d
 |-  ( ph -> ( X e. ( K ` G ) <-> ( G ` X ) = .0. ) )