Description: A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lkrcl.v | |- V = ( Base ` W ) |
|
| lkrcl.f | |- F = ( LFnl ` W ) |
||
| lkrcl.k | |- K = ( LKer ` W ) |
||
| Assertion | lkrcl | |- ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> X e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrcl.v | |- V = ( Base ` W ) |
|
| 2 | lkrcl.f | |- F = ( LFnl ` W ) |
|
| 3 | lkrcl.k | |- K = ( LKer ` W ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 6 | 1 4 5 2 3 | ellkr | |- ( ( W e. Y /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
| 7 | 6 | simprbda | |- ( ( ( W e. Y /\ G e. F ) /\ X e. ( K ` G ) ) -> X e. V ) |
| 8 | 7 | 3impa | |- ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> X e. V ) |