Metamath Proof Explorer


Theorem lkrcl

Description: A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrcl.v
|- V = ( Base ` W )
lkrcl.f
|- F = ( LFnl ` W )
lkrcl.k
|- K = ( LKer ` W )
Assertion lkrcl
|- ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> X e. V )

Proof

Step Hyp Ref Expression
1 lkrcl.v
 |-  V = ( Base ` W )
2 lkrcl.f
 |-  F = ( LFnl ` W )
3 lkrcl.k
 |-  K = ( LKer ` W )
4 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
5 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
6 1 4 5 2 3 ellkr
 |-  ( ( W e. Y /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) ) )
7 6 simprbda
 |-  ( ( ( W e. Y /\ G e. F ) /\ X e. ( K ` G ) ) -> X e. V )
8 7 3impa
 |-  ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> X e. V )