Description: The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lkrf0.d | |- D = ( Scalar ` W ) |
|
lkrf0.o | |- .0. = ( 0g ` D ) |
||
lkrf0.f | |- F = ( LFnl ` W ) |
||
lkrf0.k | |- K = ( LKer ` W ) |
||
Assertion | lkrf0 | |- ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> ( G ` X ) = .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrf0.d | |- D = ( Scalar ` W ) |
|
2 | lkrf0.o | |- .0. = ( 0g ` D ) |
|
3 | lkrf0.f | |- F = ( LFnl ` W ) |
|
4 | lkrf0.k | |- K = ( LKer ` W ) |
|
5 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
6 | 5 1 2 3 4 | ellkr | |- ( ( W e. Y /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. ( Base ` W ) /\ ( G ` X ) = .0. ) ) ) |
7 | 6 | simplbda | |- ( ( ( W e. Y /\ G e. F ) /\ X e. ( K ` G ) ) -> ( G ` X ) = .0. ) |
8 | 7 | 3impa | |- ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> ( G ` X ) = .0. ) |