Metamath Proof Explorer


Theorem lkrf0

Description: The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrf0.d
|- D = ( Scalar ` W )
lkrf0.o
|- .0. = ( 0g ` D )
lkrf0.f
|- F = ( LFnl ` W )
lkrf0.k
|- K = ( LKer ` W )
Assertion lkrf0
|- ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> ( G ` X ) = .0. )

Proof

Step Hyp Ref Expression
1 lkrf0.d
 |-  D = ( Scalar ` W )
2 lkrf0.o
 |-  .0. = ( 0g ` D )
3 lkrf0.f
 |-  F = ( LFnl ` W )
4 lkrf0.k
 |-  K = ( LKer ` W )
5 eqid
 |-  ( Base ` W ) = ( Base ` W )
6 5 1 2 3 4 ellkr
 |-  ( ( W e. Y /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. ( Base ` W ) /\ ( G ` X ) = .0. ) ) )
7 6 simplbda
 |-  ( ( ( W e. Y /\ G e. F ) /\ X e. ( K ` G ) ) -> ( G ` X ) = .0. )
8 7 3impa
 |-  ( ( W e. Y /\ G e. F /\ X e. ( K ` G ) ) -> ( G ` X ) = .0. )