Metamath Proof Explorer


Theorem lkrf0

Description: The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrf0.d D = Scalar W
lkrf0.o 0 ˙ = 0 D
lkrf0.f F = LFnl W
lkrf0.k K = LKer W
Assertion lkrf0 W Y G F X K G G X = 0 ˙

Proof

Step Hyp Ref Expression
1 lkrf0.d D = Scalar W
2 lkrf0.o 0 ˙ = 0 D
3 lkrf0.f F = LFnl W
4 lkrf0.k K = LKer W
5 eqid Base W = Base W
6 5 1 2 3 4 ellkr W Y G F X K G X Base W G X = 0 ˙
7 6 simplbda W Y G F X K G G X = 0 ˙
8 7 3impa W Y G F X K G G X = 0 ˙