Metamath Proof Explorer


Theorem lkrf0

Description: The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrf0.d D=ScalarW
lkrf0.o 0˙=0D
lkrf0.f F=LFnlW
lkrf0.k K=LKerW
Assertion lkrf0 WYGFXKGGX=0˙

Proof

Step Hyp Ref Expression
1 lkrf0.d D=ScalarW
2 lkrf0.o 0˙=0D
3 lkrf0.f F=LFnlW
4 lkrf0.k K=LKerW
5 eqid BaseW=BaseW
6 5 1 2 3 4 ellkr WYGFXKGXBaseWGX=0˙
7 6 simplbda WYGFXKGGX=0˙
8 7 3impa WYGFXKGGX=0˙