Metamath Proof Explorer


Theorem lkr0f

Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014)

Ref Expression
Hypotheses lkr0f.d D = Scalar W
lkr0f.o 0 ˙ = 0 D
lkr0f.v V = Base W
lkr0f.f F = LFnl W
lkr0f.k K = LKer W
Assertion lkr0f W LMod G F K G = V G = V × 0 ˙

Proof

Step Hyp Ref Expression
1 lkr0f.d D = Scalar W
2 lkr0f.o 0 ˙ = 0 D
3 lkr0f.v V = Base W
4 lkr0f.f F = LFnl W
5 lkr0f.k K = LKer W
6 eqid Base D = Base D
7 1 6 3 4 lflf W LMod G F G : V Base D
8 7 ffnd W LMod G F G Fn V
9 8 adantr W LMod G F K G = V G Fn V
10 1 2 4 5 lkrval W LMod G F K G = G -1 0 ˙
11 10 eqeq1d W LMod G F K G = V G -1 0 ˙ = V
12 11 biimpa W LMod G F K G = V G -1 0 ˙ = V
13 2 fvexi 0 ˙ V
14 13 fconst2 G : V 0 ˙ G = V × 0 ˙
15 fconst4 G : V 0 ˙ G Fn V G -1 0 ˙ = V
16 14 15 bitr3i G = V × 0 ˙ G Fn V G -1 0 ˙ = V
17 9 12 16 sylanbrc W LMod G F K G = V G = V × 0 ˙
18 17 ex W LMod G F K G = V G = V × 0 ˙
19 16 biimpi G = V × 0 ˙ G Fn V G -1 0 ˙ = V
20 19 adantl W LMod G = V × 0 ˙ G Fn V G -1 0 ˙ = V
21 simpr W LMod G = V × 0 ˙ G = V × 0 ˙
22 eqid LFnl W = LFnl W
23 1 2 3 22 lfl0f W LMod V × 0 ˙ LFnl W
24 23 adantr W LMod G = V × 0 ˙ V × 0 ˙ LFnl W
25 21 24 eqeltrd W LMod G = V × 0 ˙ G LFnl W
26 1 2 22 5 lkrval W LMod G LFnl W K G = G -1 0 ˙
27 25 26 syldan W LMod G = V × 0 ˙ K G = G -1 0 ˙
28 27 eqeq1d W LMod G = V × 0 ˙ K G = V G -1 0 ˙ = V
29 ffn G : V 0 ˙ G Fn V
30 14 29 sylbir G = V × 0 ˙ G Fn V
31 30 adantl W LMod G = V × 0 ˙ G Fn V
32 31 biantrurd W LMod G = V × 0 ˙ G -1 0 ˙ = V G Fn V G -1 0 ˙ = V
33 28 32 bitrd W LMod G = V × 0 ˙ K G = V G Fn V G -1 0 ˙ = V
34 20 33 mpbird W LMod G = V × 0 ˙ K G = V
35 34 ex W LMod G = V × 0 ˙ K G = V
36 35 adantr W LMod G F G = V × 0 ˙ K G = V
37 18 36 impbid W LMod G F K G = V G = V × 0 ˙