Step |
Hyp |
Ref |
Expression |
1 |
|
lkrlss.f |
|
2 |
|
lkrlss.k |
|
3 |
|
lkrlss.s |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
4 5 6 1 2
|
lkrval2 |
|
8 |
|
ssrab2 |
|
9 |
7 8
|
eqsstrdi |
|
10 |
|
eqid |
|
11 |
4 10
|
lmod0vcl |
|
12 |
11
|
adantr |
|
13 |
5 6 10 1
|
lfl0 |
|
14 |
4 5 6 1 2
|
ellkr |
|
15 |
12 13 14
|
mpbir2and |
|
16 |
15
|
ne0d |
|
17 |
|
simplll |
|
18 |
|
simplr |
|
19 |
|
simpllr |
|
20 |
|
simprl |
|
21 |
4 1 2
|
lkrcl |
|
22 |
17 19 20 21
|
syl3anc |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
4 5 23 24
|
lmodvscl |
|
26 |
17 18 22 25
|
syl3anc |
|
27 |
|
simprr |
|
28 |
4 1 2
|
lkrcl |
|
29 |
17 19 27 28
|
syl3anc |
|
30 |
|
eqid |
|
31 |
4 30
|
lmodvacl |
|
32 |
17 26 29 31
|
syl3anc |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
4 30 5 23 24 33 34 1
|
lfli |
|
36 |
17 19 18 22 29 35
|
syl113anc |
|
37 |
5 6 1 2
|
lkrf0 |
|
38 |
17 19 20 37
|
syl3anc |
|
39 |
38
|
oveq2d |
|
40 |
5
|
lmodring |
|
41 |
17 40
|
syl |
|
42 |
24 34 6
|
ringrz |
|
43 |
41 18 42
|
syl2anc |
|
44 |
39 43
|
eqtrd |
|
45 |
5 6 1 2
|
lkrf0 |
|
46 |
17 19 27 45
|
syl3anc |
|
47 |
44 46
|
oveq12d |
|
48 |
5
|
lmodfgrp |
|
49 |
17 48
|
syl |
|
50 |
24 6
|
grpidcl |
|
51 |
24 33 6
|
grplid |
|
52 |
49 50 51
|
syl2anc2 |
|
53 |
36 47 52
|
3eqtrd |
|
54 |
4 5 6 1 2
|
ellkr |
|
55 |
54
|
ad2antrr |
|
56 |
32 53 55
|
mpbir2and |
|
57 |
56
|
ralrimivva |
|
58 |
57
|
ralrimiva |
|
59 |
5 24 4 30 23 3
|
islss |
|
60 |
9 16 58 59
|
syl3anbrc |
|