Metamath Proof Explorer


Theorem lkrlss

Description: The kernel of a linear functional is a subspace. ( nlelshi analog.) (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrlss.f F = LFnl W
lkrlss.k K = LKer W
lkrlss.s S = LSubSp W
Assertion lkrlss W LMod G F K G S

Proof

Step Hyp Ref Expression
1 lkrlss.f F = LFnl W
2 lkrlss.k K = LKer W
3 lkrlss.s S = LSubSp W
4 eqid Base W = Base W
5 eqid Scalar W = Scalar W
6 eqid 0 Scalar W = 0 Scalar W
7 4 5 6 1 2 lkrval2 W LMod G F K G = x Base W | G x = 0 Scalar W
8 ssrab2 x Base W | G x = 0 Scalar W Base W
9 7 8 eqsstrdi W LMod G F K G Base W
10 eqid 0 W = 0 W
11 4 10 lmod0vcl W LMod 0 W Base W
12 11 adantr W LMod G F 0 W Base W
13 5 6 10 1 lfl0 W LMod G F G 0 W = 0 Scalar W
14 4 5 6 1 2 ellkr W LMod G F 0 W K G 0 W Base W G 0 W = 0 Scalar W
15 12 13 14 mpbir2and W LMod G F 0 W K G
16 15 ne0d W LMod G F K G
17 simplll W LMod G F r Base Scalar W x K G y K G W LMod
18 simplr W LMod G F r Base Scalar W x K G y K G r Base Scalar W
19 simpllr W LMod G F r Base Scalar W x K G y K G G F
20 simprl W LMod G F r Base Scalar W x K G y K G x K G
21 4 1 2 lkrcl W LMod G F x K G x Base W
22 17 19 20 21 syl3anc W LMod G F r Base Scalar W x K G y K G x Base W
23 eqid W = W
24 eqid Base Scalar W = Base Scalar W
25 4 5 23 24 lmodvscl W LMod r Base Scalar W x Base W r W x Base W
26 17 18 22 25 syl3anc W LMod G F r Base Scalar W x K G y K G r W x Base W
27 simprr W LMod G F r Base Scalar W x K G y K G y K G
28 4 1 2 lkrcl W LMod G F y K G y Base W
29 17 19 27 28 syl3anc W LMod G F r Base Scalar W x K G y K G y Base W
30 eqid + W = + W
31 4 30 lmodvacl W LMod r W x Base W y Base W r W x + W y Base W
32 17 26 29 31 syl3anc W LMod G F r Base Scalar W x K G y K G r W x + W y Base W
33 eqid + Scalar W = + Scalar W
34 eqid Scalar W = Scalar W
35 4 30 5 23 24 33 34 1 lfli W LMod G F r Base Scalar W x Base W y Base W G r W x + W y = r Scalar W G x + Scalar W G y
36 17 19 18 22 29 35 syl113anc W LMod G F r Base Scalar W x K G y K G G r W x + W y = r Scalar W G x + Scalar W G y
37 5 6 1 2 lkrf0 W LMod G F x K G G x = 0 Scalar W
38 17 19 20 37 syl3anc W LMod G F r Base Scalar W x K G y K G G x = 0 Scalar W
39 38 oveq2d W LMod G F r Base Scalar W x K G y K G r Scalar W G x = r Scalar W 0 Scalar W
40 5 lmodring W LMod Scalar W Ring
41 17 40 syl W LMod G F r Base Scalar W x K G y K G Scalar W Ring
42 24 34 6 ringrz Scalar W Ring r Base Scalar W r Scalar W 0 Scalar W = 0 Scalar W
43 41 18 42 syl2anc W LMod G F r Base Scalar W x K G y K G r Scalar W 0 Scalar W = 0 Scalar W
44 39 43 eqtrd W LMod G F r Base Scalar W x K G y K G r Scalar W G x = 0 Scalar W
45 5 6 1 2 lkrf0 W LMod G F y K G G y = 0 Scalar W
46 17 19 27 45 syl3anc W LMod G F r Base Scalar W x K G y K G G y = 0 Scalar W
47 44 46 oveq12d W LMod G F r Base Scalar W x K G y K G r Scalar W G x + Scalar W G y = 0 Scalar W + Scalar W 0 Scalar W
48 5 lmodfgrp W LMod Scalar W Grp
49 17 48 syl W LMod G F r Base Scalar W x K G y K G Scalar W Grp
50 24 6 grpidcl Scalar W Grp 0 Scalar W Base Scalar W
51 24 33 6 grplid Scalar W Grp 0 Scalar W Base Scalar W 0 Scalar W + Scalar W 0 Scalar W = 0 Scalar W
52 49 50 51 syl2anc2 W LMod G F r Base Scalar W x K G y K G 0 Scalar W + Scalar W 0 Scalar W = 0 Scalar W
53 36 47 52 3eqtrd W LMod G F r Base Scalar W x K G y K G G r W x + W y = 0 Scalar W
54 4 5 6 1 2 ellkr W LMod G F r W x + W y K G r W x + W y Base W G r W x + W y = 0 Scalar W
55 54 ad2antrr W LMod G F r Base Scalar W x K G y K G r W x + W y K G r W x + W y Base W G r W x + W y = 0 Scalar W
56 32 53 55 mpbir2and W LMod G F r Base Scalar W x K G y K G r W x + W y K G
57 56 ralrimivva W LMod G F r Base Scalar W x K G y K G r W x + W y K G
58 57 ralrimiva W LMod G F r Base Scalar W x K G y K G r W x + W y K G
59 5 24 4 30 23 3 islss K G S K G Base W K G r Base Scalar W x K G y K G r W x + W y K G
60 9 16 58 59 syl3anbrc W LMod G F K G S