| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrlss.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 2 |
|
lkrlss.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
| 3 |
|
lkrlss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
4 5 6 1 2
|
lkrval2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝐺 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 8 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝐺 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ⊆ ( Base ‘ 𝑊 ) |
| 9 |
7 8
|
eqsstrdi |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 11 |
4 10
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 13 |
5 6 10 1
|
lfl0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐺 ‘ ( 0g ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 |
4 5 6 1 2
|
ellkr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 0g ‘ 𝑊 ) ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐺 ‘ ( 0g ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 15 |
12 13 14
|
mpbir2and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 0g ‘ 𝑊 ) ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 16 |
15
|
ne0d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) ≠ ∅ ) |
| 17 |
|
simplll |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → 𝑊 ∈ LMod ) |
| 18 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 19 |
|
simpllr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → 𝐺 ∈ 𝐹 ) |
| 20 |
|
simprl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 21 |
4 1 2
|
lkrcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 22 |
17 19 20 21
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 23 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 24 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 25 |
4 5 23 24
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
| 26 |
17 18 22 25
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
| 27 |
|
simprr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 28 |
4 1 2
|
lkrcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 29 |
17 19 27 28
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 30 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 31 |
4 30
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 32 |
17 26 29 31
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 33 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
| 34 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
| 35 |
4 30 5 23 24 33 34 1
|
lfli |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 36 |
17 19 18 22 29 35
|
syl113anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝐺 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 37 |
5 6 1 2
|
lkrf0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 38 |
17 19 20 37
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 39 |
38
|
oveq2d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 40 |
5
|
lmodring |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 41 |
17 40
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 42 |
24 34 6
|
ringrz |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Ring ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 |
41 18 42
|
syl2anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 44 |
39 43
|
eqtrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 45 |
5 6 1 2
|
lkrf0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 46 |
17 19 27 45
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝐺 ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 47 |
44 46
|
oveq12d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐺 ‘ 𝑦 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 48 |
5
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 49 |
17 48
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 50 |
24 6
|
grpidcl |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Grp → ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 51 |
24 33 6
|
grplid |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 52 |
49 50 51
|
syl2anc2 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 53 |
36 47 52
|
3eqtrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( 𝐺 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 |
4 5 6 1 2
|
ellkr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐺 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐺 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 56 |
32 53 55
|
mpbir2and |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∧ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 57 |
56
|
ralrimivva |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ∀ 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∀ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 58 |
57
|
ralrimiva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∀ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 59 |
5 24 4 30 23 3
|
islss |
⊢ ( ( 𝐾 ‘ 𝐺 ) ∈ 𝑆 ↔ ( ( 𝐾 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝐺 ) ≠ ∅ ∧ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝐾 ‘ 𝐺 ) ∀ 𝑦 ∈ ( 𝐾 ‘ 𝐺 ) ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝐺 ) ) ) |
| 60 |
9 16 58 59
|
syl3anbrc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝑆 ) |