Metamath Proof Explorer


Theorem lkrssv

Description: The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lkrssv.v 𝑉 = ( Base ‘ 𝑊 )
lkrssv.f 𝐹 = ( LFnl ‘ 𝑊 )
lkrssv.k 𝐾 = ( LKer ‘ 𝑊 )
lkrssv.w ( 𝜑𝑊 ∈ LMod )
lkrssv.g ( 𝜑𝐺𝐹 )
Assertion lkrssv ( 𝜑 → ( 𝐾𝐺 ) ⊆ 𝑉 )

Proof

Step Hyp Ref Expression
1 lkrssv.v 𝑉 = ( Base ‘ 𝑊 )
2 lkrssv.f 𝐹 = ( LFnl ‘ 𝑊 )
3 lkrssv.k 𝐾 = ( LKer ‘ 𝑊 )
4 lkrssv.w ( 𝜑𝑊 ∈ LMod )
5 lkrssv.g ( 𝜑𝐺𝐹 )
6 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
7 2 3 6 lkrlss ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → ( 𝐾𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) )
8 4 5 7 syl2anc ( 𝜑 → ( 𝐾𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) )
9 1 6 lssss ( ( 𝐾𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) → ( 𝐾𝐺 ) ⊆ 𝑉 )
10 8 9 syl ( 𝜑 → ( 𝐾𝐺 ) ⊆ 𝑉 )