Description: The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lkrssv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lkrssv.f | ⊢ 𝐹 = ( LFnl ‘ 𝑊 ) | ||
| lkrssv.k | ⊢ 𝐾 = ( LKer ‘ 𝑊 ) | ||
| lkrssv.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lkrssv.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | ||
| Assertion | lkrssv | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝐺 ) ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrssv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lkrssv.f | ⊢ 𝐹 = ( LFnl ‘ 𝑊 ) | |
| 3 | lkrssv.k | ⊢ 𝐾 = ( LKer ‘ 𝑊 ) | |
| 4 | lkrssv.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lkrssv.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | |
| 6 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 7 | 2 3 6 | lkrlss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 8 | 4 5 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 9 | 1 6 | lssss | ⊢ ( ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝑉 ) |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝐺 ) ⊆ 𝑉 ) |