Metamath Proof Explorer


Theorem lkrssv

Description: The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lkrssv.v
|- V = ( Base ` W )
lkrssv.f
|- F = ( LFnl ` W )
lkrssv.k
|- K = ( LKer ` W )
lkrssv.w
|- ( ph -> W e. LMod )
lkrssv.g
|- ( ph -> G e. F )
Assertion lkrssv
|- ( ph -> ( K ` G ) C_ V )

Proof

Step Hyp Ref Expression
1 lkrssv.v
 |-  V = ( Base ` W )
2 lkrssv.f
 |-  F = ( LFnl ` W )
3 lkrssv.k
 |-  K = ( LKer ` W )
4 lkrssv.w
 |-  ( ph -> W e. LMod )
5 lkrssv.g
 |-  ( ph -> G e. F )
6 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
7 2 3 6 lkrlss
 |-  ( ( W e. LMod /\ G e. F ) -> ( K ` G ) e. ( LSubSp ` W ) )
8 4 5 7 syl2anc
 |-  ( ph -> ( K ` G ) e. ( LSubSp ` W ) )
9 1 6 lssss
 |-  ( ( K ` G ) e. ( LSubSp ` W ) -> ( K ` G ) C_ V )
10 8 9 syl
 |-  ( ph -> ( K ` G ) C_ V )