Description: The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lkrssv.v | |- V = ( Base ` W ) |
|
lkrssv.f | |- F = ( LFnl ` W ) |
||
lkrssv.k | |- K = ( LKer ` W ) |
||
lkrssv.w | |- ( ph -> W e. LMod ) |
||
lkrssv.g | |- ( ph -> G e. F ) |
||
Assertion | lkrssv | |- ( ph -> ( K ` G ) C_ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrssv.v | |- V = ( Base ` W ) |
|
2 | lkrssv.f | |- F = ( LFnl ` W ) |
|
3 | lkrssv.k | |- K = ( LKer ` W ) |
|
4 | lkrssv.w | |- ( ph -> W e. LMod ) |
|
5 | lkrssv.g | |- ( ph -> G e. F ) |
|
6 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
7 | 2 3 6 | lkrlss | |- ( ( W e. LMod /\ G e. F ) -> ( K ` G ) e. ( LSubSp ` W ) ) |
8 | 4 5 7 | syl2anc | |- ( ph -> ( K ` G ) e. ( LSubSp ` W ) ) |
9 | 1 6 | lssss | |- ( ( K ` G ) e. ( LSubSp ` W ) -> ( K ` G ) C_ V ) |
10 | 8 9 | syl | |- ( ph -> ( K ` G ) C_ V ) |