Description: The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lkrssv.v | |- V = ( Base ` W ) |
|
| lkrssv.f | |- F = ( LFnl ` W ) |
||
| lkrssv.k | |- K = ( LKer ` W ) |
||
| lkrssv.w | |- ( ph -> W e. LMod ) |
||
| lkrssv.g | |- ( ph -> G e. F ) |
||
| Assertion | lkrssv | |- ( ph -> ( K ` G ) C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrssv.v | |- V = ( Base ` W ) |
|
| 2 | lkrssv.f | |- F = ( LFnl ` W ) |
|
| 3 | lkrssv.k | |- K = ( LKer ` W ) |
|
| 4 | lkrssv.w | |- ( ph -> W e. LMod ) |
|
| 5 | lkrssv.g | |- ( ph -> G e. F ) |
|
| 6 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 7 | 2 3 6 | lkrlss | |- ( ( W e. LMod /\ G e. F ) -> ( K ` G ) e. ( LSubSp ` W ) ) |
| 8 | 4 5 7 | syl2anc | |- ( ph -> ( K ` G ) e. ( LSubSp ` W ) ) |
| 9 | 1 6 | lssss | |- ( ( K ` G ) e. ( LSubSp ` W ) -> ( K ` G ) C_ V ) |
| 10 | 8 9 | syl | |- ( ph -> ( K ` G ) C_ V ) |