Metamath Proof Explorer


Theorem nlelshi

Description: The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis nlelsh.1 𝑇 ∈ LinFn
Assertion nlelshi ( null ‘ 𝑇 ) ∈ S

Proof

Step Hyp Ref Expression
1 nlelsh.1 𝑇 ∈ LinFn
2 ax-hv0cl 0 ∈ ℋ
3 1 lnfn0i ( 𝑇 ‘ 0 ) = 0
4 1 lnfnfi 𝑇 : ℋ ⟶ ℂ
5 elnlfn ( 𝑇 : ℋ ⟶ ℂ → ( 0 ∈ ( null ‘ 𝑇 ) ↔ ( 0 ∈ ℋ ∧ ( 𝑇 ‘ 0 ) = 0 ) ) )
6 4 5 ax-mp ( 0 ∈ ( null ‘ 𝑇 ) ↔ ( 0 ∈ ℋ ∧ ( 𝑇 ‘ 0 ) = 0 ) )
7 2 3 6 mpbir2an 0 ∈ ( null ‘ 𝑇 )
8 nlfnval ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( 𝑇 “ { 0 } ) )
9 4 8 ax-mp ( null ‘ 𝑇 ) = ( 𝑇 “ { 0 } )
10 cnvimass ( 𝑇 “ { 0 } ) ⊆ dom 𝑇
11 9 10 eqsstri ( null ‘ 𝑇 ) ⊆ dom 𝑇
12 4 fdmi dom 𝑇 = ℋ
13 11 12 sseqtri ( null ‘ 𝑇 ) ⊆ ℋ
14 13 sseli ( 𝑥 ∈ ( null ‘ 𝑇 ) → 𝑥 ∈ ℋ )
15 13 sseli ( 𝑦 ∈ ( null ‘ 𝑇 ) → 𝑦 ∈ ℋ )
16 hvaddcl ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 + 𝑦 ) ∈ ℋ )
17 14 15 16 syl2an ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 + 𝑦 ) ∈ ℋ )
18 1 lnfnaddi ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑇𝑥 ) + ( 𝑇𝑦 ) ) )
19 14 15 18 syl2an ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑇𝑥 ) + ( 𝑇𝑦 ) ) )
20 elnlfn ( 𝑇 : ℋ ⟶ ℂ → ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 0 ) ) )
21 4 20 ax-mp ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 0 ) )
22 21 simprbi ( 𝑥 ∈ ( null ‘ 𝑇 ) → ( 𝑇𝑥 ) = 0 )
23 elnlfn ( 𝑇 : ℋ ⟶ ℂ → ( 𝑦 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑦 ∈ ℋ ∧ ( 𝑇𝑦 ) = 0 ) ) )
24 4 23 ax-mp ( 𝑦 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑦 ∈ ℋ ∧ ( 𝑇𝑦 ) = 0 ) )
25 24 simprbi ( 𝑦 ∈ ( null ‘ 𝑇 ) → ( 𝑇𝑦 ) = 0 )
26 22 25 oveqan12d ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( ( 𝑇𝑥 ) + ( 𝑇𝑦 ) ) = ( 0 + 0 ) )
27 19 26 eqtrd ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 + 𝑦 ) ) = ( 0 + 0 ) )
28 00id ( 0 + 0 ) = 0
29 27 28 eqtrdi ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 + 𝑦 ) ) = 0 )
30 elnlfn ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝑥 + 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 + 𝑦 ) ) = 0 ) ) )
31 4 30 ax-mp ( ( 𝑥 + 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 + 𝑦 ) ) = 0 ) )
32 17 29 31 sylanbrc ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 + 𝑦 ) ∈ ( null ‘ 𝑇 ) )
33 32 rgen2 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 + 𝑦 ) ∈ ( null ‘ 𝑇 )
34 hvmulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · 𝑦 ) ∈ ℋ )
35 15 34 sylan2 ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 · 𝑦 ) ∈ ℋ )
36 1 lnfnmuli ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 · ( 𝑇𝑦 ) ) )
37 15 36 sylan2 ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 · ( 𝑇𝑦 ) ) )
38 25 oveq2d ( 𝑦 ∈ ( null ‘ 𝑇 ) → ( 𝑥 · ( 𝑇𝑦 ) ) = ( 𝑥 · 0 ) )
39 mul01 ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 )
40 38 39 sylan9eqr ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 · ( 𝑇𝑦 ) ) = 0 )
41 37 40 eqtrd ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 · 𝑦 ) ) = 0 )
42 elnlfn ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝑥 · 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 · 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 · 𝑦 ) ) = 0 ) ) )
43 4 42 ax-mp ( ( 𝑥 · 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 · 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 · 𝑦 ) ) = 0 ) )
44 35 41 43 sylanbrc ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 · 𝑦 ) ∈ ( null ‘ 𝑇 ) )
45 44 rgen2 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 · 𝑦 ) ∈ ( null ‘ 𝑇 )
46 33 45 pm3.2i ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 + 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 · 𝑦 ) ∈ ( null ‘ 𝑇 ) )
47 issh3 ( ( null ‘ 𝑇 ) ⊆ ℋ → ( ( null ‘ 𝑇 ) ∈ S ↔ ( 0 ∈ ( null ‘ 𝑇 ) ∧ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 + 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 · 𝑦 ) ∈ ( null ‘ 𝑇 ) ) ) ) )
48 13 47 ax-mp ( ( null ‘ 𝑇 ) ∈ S ↔ ( 0 ∈ ( null ‘ 𝑇 ) ∧ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 + 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 · 𝑦 ) ∈ ( null ‘ 𝑇 ) ) ) )
49 7 46 48 mpbir2an ( null ‘ 𝑇 ) ∈ S