| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlelsh.1 |
⊢ 𝑇 ∈ LinFn |
| 2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 3 |
1
|
lnfn0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
| 4 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
| 5 |
|
elnlfn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 0ℎ ∈ ( null ‘ 𝑇 ) ↔ ( 0ℎ ∈ ℋ ∧ ( 𝑇 ‘ 0ℎ ) = 0 ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( 0ℎ ∈ ( null ‘ 𝑇 ) ↔ ( 0ℎ ∈ ℋ ∧ ( 𝑇 ‘ 0ℎ ) = 0 ) ) |
| 7 |
2 3 6
|
mpbir2an |
⊢ 0ℎ ∈ ( null ‘ 𝑇 ) |
| 8 |
|
nlfnval |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 9 |
4 8
|
ax-mp |
⊢ ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) |
| 10 |
|
cnvimass |
⊢ ( ◡ 𝑇 “ { 0 } ) ⊆ dom 𝑇 |
| 11 |
9 10
|
eqsstri |
⊢ ( null ‘ 𝑇 ) ⊆ dom 𝑇 |
| 12 |
4
|
fdmi |
⊢ dom 𝑇 = ℋ |
| 13 |
11 12
|
sseqtri |
⊢ ( null ‘ 𝑇 ) ⊆ ℋ |
| 14 |
13
|
sseli |
⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) → 𝑥 ∈ ℋ ) |
| 15 |
13
|
sseli |
⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) → 𝑦 ∈ ℋ ) |
| 16 |
|
hvaddcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) |
| 17 |
14 15 16
|
syl2an |
⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) |
| 18 |
1
|
lnfnaddi |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑦 ) ) ) |
| 19 |
14 15 18
|
syl2an |
⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑦 ) ) ) |
| 20 |
|
elnlfn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ) |
| 21 |
4 20
|
ax-mp |
⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
| 22 |
21
|
simprbi |
⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) → ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 23 |
|
elnlfn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑦 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑦 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) = 0 ) ) ) |
| 24 |
4 23
|
ax-mp |
⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑦 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) = 0 ) ) |
| 25 |
24
|
simprbi |
⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) → ( 𝑇 ‘ 𝑦 ) = 0 ) |
| 26 |
22 25
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑦 ) ) = ( 0 + 0 ) ) |
| 27 |
19 26
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( 0 + 0 ) ) |
| 28 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 29 |
27 28
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = 0 ) |
| 30 |
|
elnlfn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = 0 ) ) ) |
| 31 |
4 30
|
ax-mp |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = 0 ) ) |
| 32 |
17 29 31
|
sylanbrc |
⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) |
| 33 |
32
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) |
| 34 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 35 |
15 34
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 36 |
1
|
lnfnmuli |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) ) |
| 37 |
15 36
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) ) |
| 38 |
25
|
oveq2d |
⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) → ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 · 0 ) ) |
| 39 |
|
mul01 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) |
| 40 |
38 39
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) = 0 ) |
| 41 |
37 40
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = 0 ) |
| 42 |
|
elnlfn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = 0 ) ) ) |
| 43 |
4 42
|
ax-mp |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = 0 ) ) |
| 44 |
35 41 43
|
sylanbrc |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) |
| 45 |
44
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) |
| 46 |
33 45
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) |
| 47 |
|
issh3 |
⊢ ( ( null ‘ 𝑇 ) ⊆ ℋ → ( ( null ‘ 𝑇 ) ∈ Sℋ ↔ ( 0ℎ ∈ ( null ‘ 𝑇 ) ∧ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) ) ) ) |
| 48 |
13 47
|
ax-mp |
⊢ ( ( null ‘ 𝑇 ) ∈ Sℋ ↔ ( 0ℎ ∈ ( null ‘ 𝑇 ) ∧ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) ) ) |
| 49 |
7 46 48
|
mpbir2an |
⊢ ( null ‘ 𝑇 ) ∈ Sℋ |