Description: The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nlelsh.1 | |
|
Assertion | nlelshi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlelsh.1 | |
|
2 | ax-hv0cl | |
|
3 | 1 | lnfn0i | |
4 | 1 | lnfnfi | |
5 | elnlfn | |
|
6 | 4 5 | ax-mp | |
7 | 2 3 6 | mpbir2an | |
8 | nlfnval | |
|
9 | 4 8 | ax-mp | |
10 | cnvimass | |
|
11 | 9 10 | eqsstri | |
12 | 4 | fdmi | |
13 | 11 12 | sseqtri | |
14 | 13 | sseli | |
15 | 13 | sseli | |
16 | hvaddcl | |
|
17 | 14 15 16 | syl2an | |
18 | 1 | lnfnaddi | |
19 | 14 15 18 | syl2an | |
20 | elnlfn | |
|
21 | 4 20 | ax-mp | |
22 | 21 | simprbi | |
23 | elnlfn | |
|
24 | 4 23 | ax-mp | |
25 | 24 | simprbi | |
26 | 22 25 | oveqan12d | |
27 | 19 26 | eqtrd | |
28 | 00id | |
|
29 | 27 28 | eqtrdi | |
30 | elnlfn | |
|
31 | 4 30 | ax-mp | |
32 | 17 29 31 | sylanbrc | |
33 | 32 | rgen2 | |
34 | hvmulcl | |
|
35 | 15 34 | sylan2 | |
36 | 1 | lnfnmuli | |
37 | 15 36 | sylan2 | |
38 | 25 | oveq2d | |
39 | mul01 | |
|
40 | 38 39 | sylan9eqr | |
41 | 37 40 | eqtrd | |
42 | elnlfn | |
|
43 | 4 42 | ax-mp | |
44 | 35 41 43 | sylanbrc | |
45 | 44 | rgen2 | |
46 | 33 45 | pm3.2i | |
47 | issh3 | |
|
48 | 13 47 | ax-mp | |
49 | 7 46 48 | mpbir2an | |