Metamath Proof Explorer


Theorem nlelchi

Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of Beran p. 103. (Contributed by NM, 11-Feb-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses nlelch.1 TLinFn
nlelch.2 TContFn
Assertion nlelchi nullTC

Proof

Step Hyp Ref Expression
1 nlelch.1 TLinFn
2 nlelch.2 TContFn
3 1 nlelshi nullTS
4 vex xV
5 4 hlimveci fvxx
6 5 adantl f:nullTfvxx
7 eqid TopOpenfld=TopOpenfld
8 7 cnfldhaus TopOpenfldHaus
9 8 a1i f:nullTfvxTopOpenfldHaus
10 eqid +norm=+norm
11 eqid norm-=norm-
12 10 11 hhims norm-=IndMet+norm
13 eqid MetOpennorm-=MetOpennorm-
14 10 12 13 hhlm v=tMetOpennorm-
15 resss tMetOpennorm-tMetOpennorm-
16 14 15 eqsstri vtMetOpennorm-
17 16 ssbri fvxftMetOpennorm-x
18 17 adantl f:nullTfvxftMetOpennorm-x
19 11 13 7 hhcnf ContFn=MetOpennorm-CnTopOpenfld
20 2 19 eleqtri TMetOpennorm-CnTopOpenfld
21 20 a1i f:nullTfvxTMetOpennorm-CnTopOpenfld
22 18 21 lmcn f:nullTfvxTftTopOpenfldTx
23 1 lnfnfi T:
24 ffvelcdm f:nullTnfnnullT
25 24 adantlr f:nullTfvxnfnnullT
26 elnlfn2 T:fnnullTTfn=0
27 23 25 26 sylancr f:nullTfvxnTfn=0
28 fvco3 f:nullTnTfn=Tfn
29 28 adantlr f:nullTfvxnTfn=Tfn
30 c0ex 0V
31 30 fvconst2 n×0n=0
32 31 adantl f:nullTfvxn×0n=0
33 27 29 32 3eqtr4d f:nullTfvxnTfn=×0n
34 33 ralrimiva f:nullTfvxnTfn=×0n
35 ffn T:TFn
36 23 35 ax-mp TFn
37 simpl f:nullTfvxf:nullT
38 3 shssii nullT
39 fss f:nullTnullTf:
40 37 38 39 sylancl f:nullTfvxf:
41 fnfco TFnf:TfFn
42 36 40 41 sylancr f:nullTfvxTfFn
43 30 fconst ×0:0
44 ffn ×0:0×0Fn
45 43 44 ax-mp ×0Fn
46 eqfnfv TfFn×0FnTf=×0nTfn=×0n
47 42 45 46 sylancl f:nullTfvxTf=×0nTfn=×0n
48 34 47 mpbird f:nullTfvxTf=×0
49 7 cnfldtopon TopOpenfldTopOn
50 49 a1i f:nullTfvxTopOpenfldTopOn
51 0cnd f:nullTfvx0
52 1zzd f:nullTfvx1
53 nnuz =1
54 53 lmconst TopOpenfldTopOn01×0tTopOpenfld0
55 50 51 52 54 syl3anc f:nullTfvx×0tTopOpenfld0
56 48 55 eqbrtrd f:nullTfvxTftTopOpenfld0
57 9 22 56 lmmo f:nullTfvxTx=0
58 elnlfn T:xnullTxTx=0
59 23 58 ax-mp xnullTxTx=0
60 6 57 59 sylanbrc f:nullTfvxxnullT
61 60 gen2 fxf:nullTfvxxnullT
62 isch2 nullTCnullTSfxf:nullTfvxxnullT
63 3 61 62 mpbir2an nullTC