Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of Beran p. 103. (Contributed by NM, 11-Feb-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nlelch.1 | |
|
nlelch.2 | |
||
Assertion | nlelchi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlelch.1 | |
|
2 | nlelch.2 | |
|
3 | 1 | nlelshi | |
4 | vex | |
|
5 | 4 | hlimveci | |
6 | 5 | adantl | |
7 | eqid | |
|
8 | 7 | cnfldhaus | |
9 | 8 | a1i | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | hhims | |
13 | eqid | |
|
14 | 10 12 13 | hhlm | |
15 | resss | |
|
16 | 14 15 | eqsstri | |
17 | 16 | ssbri | |
18 | 17 | adantl | |
19 | 11 13 7 | hhcnf | |
20 | 2 19 | eleqtri | |
21 | 20 | a1i | |
22 | 18 21 | lmcn | |
23 | 1 | lnfnfi | |
24 | ffvelcdm | |
|
25 | 24 | adantlr | |
26 | elnlfn2 | |
|
27 | 23 25 26 | sylancr | |
28 | fvco3 | |
|
29 | 28 | adantlr | |
30 | c0ex | |
|
31 | 30 | fvconst2 | |
32 | 31 | adantl | |
33 | 27 29 32 | 3eqtr4d | |
34 | 33 | ralrimiva | |
35 | ffn | |
|
36 | 23 35 | ax-mp | |
37 | simpl | |
|
38 | 3 | shssii | |
39 | fss | |
|
40 | 37 38 39 | sylancl | |
41 | fnfco | |
|
42 | 36 40 41 | sylancr | |
43 | 30 | fconst | |
44 | ffn | |
|
45 | 43 44 | ax-mp | |
46 | eqfnfv | |
|
47 | 42 45 46 | sylancl | |
48 | 34 47 | mpbird | |
49 | 7 | cnfldtopon | |
50 | 49 | a1i | |
51 | 0cnd | |
|
52 | 1zzd | |
|
53 | nnuz | |
|
54 | 53 | lmconst | |
55 | 50 51 52 54 | syl3anc | |
56 | 48 55 | eqbrtrd | |
57 | 9 22 56 | lmmo | |
58 | elnlfn | |
|
59 | 23 58 | ax-mp | |
60 | 6 57 59 | sylanbrc | |
61 | 60 | gen2 | |
62 | isch2 | |
|
63 | 3 61 62 | mpbir2an | |