Metamath Proof Explorer


Theorem hhims

Description: The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 U=+norm
hhims.2 D=norm-
Assertion hhims D=IndMetU

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 hhims.2 D=norm-
3 1 hhnv UNrmCVec
4 1 hhvs -=-vU
5 1 hhnm norm=normCVU
6 eqid IndMetU=IndMetU
7 4 5 6 imsval UNrmCVecIndMetU=norm-
8 3 7 ax-mp IndMetU=norm-
9 2 8 eqtr4i D=IndMetU