Metamath Proof Explorer


Definition df-vs

Description: Define vector subtraction on a normed complex vector space. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Assertion df-vs -v=/g+v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnsb class-v
1 cgs class/g
2 cpv class+v
3 1 2 ccom class/g+v
4 0 3 wceq wff-v=/g+v