Metamath Proof Explorer


Definition df-ims

Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)

Ref Expression
Assertion df-ims IndMet=uNrmCVecnormCVu-vu

Detailed syntax breakdown

Step Hyp Ref Expression
0 cims classIndMet
1 vu setvaru
2 cnv classNrmCVec
3 cnmcv classnormCV
4 1 cv setvaru
5 4 3 cfv classnormCVu
6 cnsb class-v
7 4 6 cfv class-vu
8 5 7 ccom classnormCVu-vu
9 1 2 8 cmpt classuNrmCVecnormCVu-vu
10 0 9 wceq wffIndMet=uNrmCVecnormCVu-vu