Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnfn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnfn | |
|
1 | vt | |
|
2 | cc | |
|
3 | cmap | |
|
4 | chba | |
|
5 | 2 4 3 | co | |
6 | vx | |
|
7 | vy | |
|
8 | crp | |
|
9 | vz | |
|
10 | vw | |
|
11 | cno | |
|
12 | 10 | cv | |
13 | cmv | |
|
14 | 6 | cv | |
15 | 12 14 13 | co | |
16 | 15 11 | cfv | |
17 | clt | |
|
18 | 9 | cv | |
19 | 16 18 17 | wbr | |
20 | cabs | |
|
21 | 1 | cv | |
22 | 12 21 | cfv | |
23 | cmin | |
|
24 | 14 21 | cfv | |
25 | 22 24 23 | co | |
26 | 25 20 | cfv | |
27 | 7 | cv | |
28 | 26 27 17 | wbr | |
29 | 19 28 | wi | |
30 | 29 10 4 | wral | |
31 | 30 9 8 | wrex | |
32 | 31 7 8 | wral | |
33 | 32 6 4 | wral | |
34 | 33 1 5 | crab | |
35 | 0 34 | wceq | |