Metamath Proof Explorer


Definition df-cnfn

Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-cnfn ContFn=t|xy+z+wnormw-x<ztwtx<y

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfn classContFn
1 vt setvart
2 cc class
3 cmap class𝑚
4 chba class
5 2 4 3 co class
6 vx setvarx
7 vy setvary
8 crp class+
9 vz setvarz
10 vw setvarw
11 cno classnorm
12 10 cv setvarw
13 cmv class-
14 6 cv setvarx
15 12 14 13 co classw-x
16 15 11 cfv classnormw-x
17 clt class<
18 9 cv setvarz
19 16 18 17 wbr wffnormw-x<z
20 cabs classabs
21 1 cv setvart
22 12 21 cfv classtw
23 cmin class
24 14 21 cfv classtx
25 22 24 23 co classtwtx
26 25 20 cfv classtwtx
27 7 cv setvary
28 26 27 17 wbr wfftwtx<y
29 19 28 wi wffnormw-x<ztwtx<y
30 29 10 4 wral wffwnormw-x<ztwtx<y
31 30 9 8 wrex wffz+wnormw-x<ztwtx<y
32 31 7 8 wral wffy+z+wnormw-x<ztwtx<y
33 32 6 4 wral wffxy+z+wnormw-x<ztwtx<y
34 33 1 5 crab classt|xy+z+wnormw-x<ztwtx<y
35 0 34 wceq wffContFn=t|xy+z+wnormw-x<ztwtx<y