Metamath Proof Explorer


Definition df-lnfn

Description: Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-lnfn LinFn=t|xyztxy+z=xty+tz

Detailed syntax breakdown

Step Hyp Ref Expression
0 clf classLinFn
1 vt setvart
2 cc class
3 cmap class𝑚
4 chba class
5 2 4 3 co class
6 vx setvarx
7 vy setvary
8 vz setvarz
9 1 cv setvart
10 6 cv setvarx
11 csm class
12 7 cv setvary
13 10 12 11 co classxy
14 cva class+
15 8 cv setvarz
16 13 15 14 co classxy+z
17 16 9 cfv classtxy+z
18 cmul class×
19 12 9 cfv classty
20 10 19 18 co classxty
21 caddc class+
22 15 9 cfv classtz
23 20 22 21 co classxty+tz
24 17 23 wceq wfftxy+z=xty+tz
25 24 8 4 wral wffztxy+z=xty+tz
26 25 7 4 wral wffyztxy+z=xty+tz
27 26 6 2 wral wffxyztxy+z=xty+tz
28 27 1 5 crab classt|xyztxy+z=xty+tz
29 0 28 wceq wffLinFn=t|xyztxy+z=xty+tz