Metamath Proof Explorer


Definition df-cnfn

Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-cnfn
|- ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfn
 |-  ContFn
1 vt
 |-  t
2 cc
 |-  CC
3 cmap
 |-  ^m
4 chba
 |-  ~H
5 2 4 3 co
 |-  ( CC ^m ~H )
6 vx
 |-  x
7 vy
 |-  y
8 crp
 |-  RR+
9 vz
 |-  z
10 vw
 |-  w
11 cno
 |-  normh
12 10 cv
 |-  w
13 cmv
 |-  -h
14 6 cv
 |-  x
15 12 14 13 co
 |-  ( w -h x )
16 15 11 cfv
 |-  ( normh ` ( w -h x ) )
17 clt
 |-  <
18 9 cv
 |-  z
19 16 18 17 wbr
 |-  ( normh ` ( w -h x ) ) < z
20 cabs
 |-  abs
21 1 cv
 |-  t
22 12 21 cfv
 |-  ( t ` w )
23 cmin
 |-  -
24 14 21 cfv
 |-  ( t ` x )
25 22 24 23 co
 |-  ( ( t ` w ) - ( t ` x ) )
26 25 20 cfv
 |-  ( abs ` ( ( t ` w ) - ( t ` x ) ) )
27 7 cv
 |-  y
28 26 27 17 wbr
 |-  ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y
29 19 28 wi
 |-  ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y )
30 29 10 4 wral
 |-  A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y )
31 30 9 8 wrex
 |-  E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y )
32 31 7 8 wral
 |-  A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y )
33 32 6 4 wral
 |-  A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y )
34 33 1 5 crab
 |-  { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) }
35 0 34 wceq
 |-  ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) }