Metamath Proof Explorer


Theorem nlelchi

Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of Beran p. 103. (Contributed by NM, 11-Feb-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion nlelchi ( null ‘ 𝑇 ) ∈ C

Proof

Step Hyp Ref Expression
1 nlelch.1 𝑇 ∈ LinFn
2 nlelch.2 𝑇 ∈ ContFn
3 1 nlelshi ( null ‘ 𝑇 ) ∈ S
4 vex 𝑥 ∈ V
5 4 hlimveci ( 𝑓𝑣 𝑥𝑥 ∈ ℋ )
6 5 adantl ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ ℋ )
7 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
8 7 cnfldhaus ( TopOpen ‘ ℂfld ) ∈ Haus
9 8 a1i ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( TopOpen ‘ ℂfld ) ∈ Haus )
10 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
11 eqid ( norm ∘ − ) = ( norm ∘ − )
12 10 11 hhims ( norm ∘ − ) = ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
13 eqid ( MetOpen ‘ ( norm ∘ − ) ) = ( MetOpen ‘ ( norm ∘ − ) )
14 10 12 13 hhlm 𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) ↾ ( ℋ ↑m ℕ ) )
15 resss ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) )
16 14 15 eqsstri 𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) )
17 16 ssbri ( 𝑓𝑣 𝑥𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) 𝑥 )
18 17 adantl ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) 𝑥 )
19 11 13 7 hhcnf ContFn = ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( TopOpen ‘ ℂfld ) )
20 2 19 eleqtri 𝑇 ∈ ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( TopOpen ‘ ℂfld ) )
21 20 a1i ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑇 ∈ ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( TopOpen ‘ ℂfld ) ) )
22 18 21 lmcn ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( 𝑇𝑓 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) ( 𝑇𝑥 ) )
23 1 lnfnfi 𝑇 : ℋ ⟶ ℂ
24 ffvelrn ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓𝑛 ) ∈ ( null ‘ 𝑇 ) )
25 24 adantlr ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓𝑛 ) ∈ ( null ‘ 𝑇 ) )
26 elnlfn2 ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝑓𝑛 ) ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑓𝑛 ) ) = 0 )
27 23 25 26 sylancr ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑓𝑛 ) ) = 0 )
28 fvco3 ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇𝑓 ) ‘ 𝑛 ) = ( 𝑇 ‘ ( 𝑓𝑛 ) ) )
29 28 adantlr ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇𝑓 ) ‘ 𝑛 ) = ( 𝑇 ‘ ( 𝑓𝑛 ) ) )
30 c0ex 0 ∈ V
31 30 fvconst2 ( 𝑛 ∈ ℕ → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 )
32 31 adantl ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 )
33 27 29 32 3eqtr4d ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) )
34 33 ralrimiva ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ∀ 𝑛 ∈ ℕ ( ( 𝑇𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) )
35 ffn ( 𝑇 : ℋ ⟶ ℂ → 𝑇 Fn ℋ )
36 23 35 ax-mp 𝑇 Fn ℋ
37 simpl ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) )
38 3 shssii ( null ‘ 𝑇 ) ⊆ ℋ
39 fss ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ ( null ‘ 𝑇 ) ⊆ ℋ ) → 𝑓 : ℕ ⟶ ℋ )
40 37 38 39 sylancl ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ℋ )
41 fnfco ( ( 𝑇 Fn ℋ ∧ 𝑓 : ℕ ⟶ ℋ ) → ( 𝑇𝑓 ) Fn ℕ )
42 36 40 41 sylancr ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( 𝑇𝑓 ) Fn ℕ )
43 30 fconst ( ℕ × { 0 } ) : ℕ ⟶ { 0 }
44 ffn ( ( ℕ × { 0 } ) : ℕ ⟶ { 0 } → ( ℕ × { 0 } ) Fn ℕ )
45 43 44 ax-mp ( ℕ × { 0 } ) Fn ℕ
46 eqfnfv ( ( ( 𝑇𝑓 ) Fn ℕ ∧ ( ℕ × { 0 } ) Fn ℕ ) → ( ( 𝑇𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑇𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) )
47 42 45 46 sylancl ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( ( 𝑇𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑇𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) )
48 34 47 mpbird ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( 𝑇𝑓 ) = ( ℕ × { 0 } ) )
49 7 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
50 49 a1i ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
51 0cnd ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 0 ∈ ℂ )
52 1zzd ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 1 ∈ ℤ )
53 nnuz ℕ = ( ℤ ‘ 1 )
54 53 lmconst ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 )
55 50 51 52 54 syl3anc ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 )
56 48 55 eqbrtrd ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( 𝑇𝑓 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 )
57 9 22 56 lmmo ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → ( 𝑇𝑥 ) = 0 )
58 elnlfn ( 𝑇 : ℋ ⟶ ℂ → ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 0 ) ) )
59 23 58 ax-mp ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 0 ) )
60 6 57 59 sylanbrc ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) )
61 60 gen2 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) )
62 isch2 ( ( null ‘ 𝑇 ) ∈ C ↔ ( ( null ‘ 𝑇 ) ∈ S ∧ ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) ) ) )
63 3 61 62 mpbir2an ( null ‘ 𝑇 ) ∈ C