Metamath Proof Explorer


Theorem elnlfn

Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elnlfn ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇𝐴 ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 nlfnval ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( 𝑇 “ { 0 } ) )
2 cnvimass ( 𝑇 “ { 0 } ) ⊆ dom 𝑇
3 1 2 eqsstrdi ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ dom 𝑇 )
4 fdm ( 𝑇 : ℋ ⟶ ℂ → dom 𝑇 = ℋ )
5 3 4 sseqtrd ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ ℋ )
6 5 sseld ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) → 𝐴 ∈ ℋ ) )
7 6 pm4.71rd ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ) )
8 1 eleq2d ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( 𝑇 “ { 0 } ) ) )
9 8 adantr ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( 𝑇 “ { 0 } ) ) )
10 ffn ( 𝑇 : ℋ ⟶ ℂ → 𝑇 Fn ℋ )
11 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝑇 “ { 0 } ) ↔ 𝐴 ∈ ( 𝑇 “ { 0 } ) ) )
12 fveqeq2 ( 𝑥 = 𝐴 → ( ( 𝑇𝑥 ) = 0 ↔ ( 𝑇𝐴 ) = 0 ) )
13 11 12 bibi12d ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝐴 ) = 0 ) ) )
14 13 imbi2d ( 𝑥 = 𝐴 → ( ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝑥 ) = 0 ) ) ↔ ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝐴 ) = 0 ) ) ) )
15 0cn 0 ∈ ℂ
16 vex 𝑥 ∈ V
17 16 eliniseg ( 0 ∈ ℂ → ( 𝑥 ∈ ( 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 ) )
18 15 17 ax-mp ( 𝑥 ∈ ( 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 )
19 fnbrfvb ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) = 0 ↔ 𝑥 𝑇 0 ) )
20 18 19 bitr4id ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝑥 ) = 0 ) )
21 20 expcom ( 𝑥 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝑥 ) = 0 ) ) )
22 14 21 vtoclga ( 𝐴 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝐴 ) = 0 ) ) )
23 10 22 mpan9 ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( 𝑇 “ { 0 } ) ↔ ( 𝑇𝐴 ) = 0 ) )
24 9 23 bitrd ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑇𝐴 ) = 0 ) )
25 24 pm5.32da ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇𝐴 ) = 0 ) ) )
26 7 25 bitrd ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇𝐴 ) = 0 ) ) )