Step |
Hyp |
Ref |
Expression |
1 |
|
nlfnval |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
2 |
|
cnvimass |
⊢ ( ◡ 𝑇 “ { 0 } ) ⊆ dom 𝑇 |
3 |
1 2
|
eqsstrdi |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ dom 𝑇 ) |
4 |
|
fdm |
⊢ ( 𝑇 : ℋ ⟶ ℂ → dom 𝑇 = ℋ ) |
5 |
3 4
|
sseqtrd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ ℋ ) |
6 |
5
|
sseld |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) → 𝐴 ∈ ℋ ) ) |
7 |
6
|
pm4.71rd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ) ) |
8 |
1
|
eleq2d |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
10 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → 𝑇 Fn ℋ ) |
11 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
12 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ 𝑥 ) = 0 ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
13 |
11 12
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ↔ ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) ) |
15 |
|
0cn |
⊢ 0 ∈ ℂ |
16 |
|
vex |
⊢ 𝑥 ∈ V |
17 |
16
|
eliniseg |
⊢ ( 0 ∈ ℂ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 ) ) |
18 |
15 17
|
ax-mp |
⊢ ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 ) |
19 |
|
fnbrfvb |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) = 0 ↔ 𝑥 𝑇 0 ) ) |
20 |
18 19
|
bitr4id |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
21 |
20
|
expcom |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ) |
22 |
14 21
|
vtoclga |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
23 |
10 22
|
mpan9 |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
24 |
9 23
|
bitrd |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
25 |
24
|
pm5.32da |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
26 |
7 25
|
bitrd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |