Step |
Hyp |
Ref |
Expression |
1 |
|
nlfnval |
|- ( T : ~H --> CC -> ( null ` T ) = ( `' T " { 0 } ) ) |
2 |
|
cnvimass |
|- ( `' T " { 0 } ) C_ dom T |
3 |
1 2
|
eqsstrdi |
|- ( T : ~H --> CC -> ( null ` T ) C_ dom T ) |
4 |
|
fdm |
|- ( T : ~H --> CC -> dom T = ~H ) |
5 |
3 4
|
sseqtrd |
|- ( T : ~H --> CC -> ( null ` T ) C_ ~H ) |
6 |
5
|
sseld |
|- ( T : ~H --> CC -> ( A e. ( null ` T ) -> A e. ~H ) ) |
7 |
6
|
pm4.71rd |
|- ( T : ~H --> CC -> ( A e. ( null ` T ) <-> ( A e. ~H /\ A e. ( null ` T ) ) ) ) |
8 |
1
|
eleq2d |
|- ( T : ~H --> CC -> ( A e. ( null ` T ) <-> A e. ( `' T " { 0 } ) ) ) |
9 |
8
|
adantr |
|- ( ( T : ~H --> CC /\ A e. ~H ) -> ( A e. ( null ` T ) <-> A e. ( `' T " { 0 } ) ) ) |
10 |
|
ffn |
|- ( T : ~H --> CC -> T Fn ~H ) |
11 |
|
eleq1 |
|- ( x = A -> ( x e. ( `' T " { 0 } ) <-> A e. ( `' T " { 0 } ) ) ) |
12 |
|
fveqeq2 |
|- ( x = A -> ( ( T ` x ) = 0 <-> ( T ` A ) = 0 ) ) |
13 |
11 12
|
bibi12d |
|- ( x = A -> ( ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) <-> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) ) |
14 |
13
|
imbi2d |
|- ( x = A -> ( ( T Fn ~H -> ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) ) <-> ( T Fn ~H -> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) ) ) |
15 |
|
0cn |
|- 0 e. CC |
16 |
|
vex |
|- x e. _V |
17 |
16
|
eliniseg |
|- ( 0 e. CC -> ( x e. ( `' T " { 0 } ) <-> x T 0 ) ) |
18 |
15 17
|
ax-mp |
|- ( x e. ( `' T " { 0 } ) <-> x T 0 ) |
19 |
|
fnbrfvb |
|- ( ( T Fn ~H /\ x e. ~H ) -> ( ( T ` x ) = 0 <-> x T 0 ) ) |
20 |
18 19
|
bitr4id |
|- ( ( T Fn ~H /\ x e. ~H ) -> ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) ) |
21 |
20
|
expcom |
|- ( x e. ~H -> ( T Fn ~H -> ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) ) ) |
22 |
14 21
|
vtoclga |
|- ( A e. ~H -> ( T Fn ~H -> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) ) |
23 |
10 22
|
mpan9 |
|- ( ( T : ~H --> CC /\ A e. ~H ) -> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) |
24 |
9 23
|
bitrd |
|- ( ( T : ~H --> CC /\ A e. ~H ) -> ( A e. ( null ` T ) <-> ( T ` A ) = 0 ) ) |
25 |
24
|
pm5.32da |
|- ( T : ~H --> CC -> ( ( A e. ~H /\ A e. ( null ` T ) ) <-> ( A e. ~H /\ ( T ` A ) = 0 ) ) ) |
26 |
7 25
|
bitrd |
|- ( T : ~H --> CC -> ( A e. ( null ` T ) <-> ( A e. ~H /\ ( T ` A ) = 0 ) ) ) |