| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnex |
⊢ ℂ ∈ V |
| 2 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 3 |
1 2
|
elmap |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
| 4 |
|
cnvexg |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ◡ 𝑇 ∈ V ) |
| 5 |
|
imaexg |
⊢ ( ◡ 𝑇 ∈ V → ( ◡ 𝑇 “ { 0 } ) ∈ V ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( ◡ 𝑇 “ { 0 } ) ∈ V ) |
| 7 |
|
cnveq |
⊢ ( 𝑡 = 𝑇 → ◡ 𝑡 = ◡ 𝑇 ) |
| 8 |
7
|
imaeq1d |
⊢ ( 𝑡 = 𝑇 → ( ◡ 𝑡 “ { 0 } ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 9 |
|
df-nlfn |
⊢ null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |
| 10 |
8 9
|
fvmptg |
⊢ ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ( ◡ 𝑇 “ { 0 } ) ∈ V ) → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 11 |
6 10
|
mpdan |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 12 |
3 11
|
sylbir |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |