Metamath Proof Explorer
Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
df-nlfn |
⊢ null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cnl |
⊢ null |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cc |
⊢ ℂ |
3 |
|
cmap |
⊢ ↑m |
4 |
|
chba |
⊢ ℋ |
5 |
2 4 3
|
co |
⊢ ( ℂ ↑m ℋ ) |
6 |
1
|
cv |
⊢ 𝑡 |
7 |
6
|
ccnv |
⊢ ◡ 𝑡 |
8 |
|
cc0 |
⊢ 0 |
9 |
8
|
csn |
⊢ { 0 } |
10 |
7 9
|
cima |
⊢ ( ◡ 𝑡 “ { 0 } ) |
11 |
1 5 10
|
cmpt |
⊢ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |
12 |
0 11
|
wceq |
⊢ null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |