Metamath Proof Explorer


Definition df-nlfn

Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-nlfn null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑡 “ { 0 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnl null
1 vt 𝑡
2 cc
3 cmap m
4 chba
5 2 4 3 co ( ℂ ↑m ℋ )
6 1 cv 𝑡
7 6 ccnv 𝑡
8 cc0 0
9 8 csn { 0 }
10 7 9 cima ( 𝑡 “ { 0 } )
11 1 5 10 cmpt ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑡 “ { 0 } ) )
12 0 11 wceq null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑡 “ { 0 } ) )