Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nlfn | |- null = ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnl | |- null |
|
1 | vt | |- t |
|
2 | cc | |- CC |
|
3 | cmap | |- ^m |
|
4 | chba | |- ~H |
|
5 | 2 4 3 | co | |- ( CC ^m ~H ) |
6 | 1 | cv | |- t |
7 | 6 | ccnv | |- `' t |
8 | cc0 | |- 0 |
|
9 | 8 | csn | |- { 0 } |
10 | 7 9 | cima | |- ( `' t " { 0 } ) |
11 | 1 5 10 | cmpt | |- ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) |
12 | 0 11 | wceq | |- null = ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) |