Metamath Proof Explorer


Theorem elcnfn

Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elcnfn ( 𝑇 ∈ ContFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 fveq1 ( 𝑡 = 𝑇 → ( 𝑡𝑤 ) = ( 𝑇𝑤 ) )
2 fveq1 ( 𝑡 = 𝑇 → ( 𝑡𝑥 ) = ( 𝑇𝑥 ) )
3 1 2 oveq12d ( 𝑡 = 𝑇 → ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) = ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) )
4 3 fveq2d ( 𝑡 = 𝑇 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) = ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) )
5 4 breq1d ( 𝑡 = 𝑇 → ( ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) )
6 5 imbi2d ( 𝑡 = 𝑇 → ( ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) ↔ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) )
7 6 rexralbidv ( 𝑡 = 𝑇 → ( ∃ 𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) )
8 7 2ralbidv ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) )
9 df-cnfn ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) }
10 8 9 elrab2 ( 𝑇 ∈ ContFn ↔ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) )
11 cnex ℂ ∈ V
12 ax-hilex ℋ ∈ V
13 11 12 elmap ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ )
14 13 anbi1i ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) )
15 10 14 bitri ( 𝑇 ∈ ContFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑦 ) ) )