Metamath Proof Explorer


Theorem lmcn

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)

Ref Expression
Hypotheses lmcnp.3 ( 𝜑𝐹 ( ⇝𝑡𝐽 ) 𝑃 )
lmcn.4 ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
Assertion lmcn ( 𝜑 → ( 𝐺𝐹 ) ( ⇝𝑡𝐾 ) ( 𝐺𝑃 ) )

Proof

Step Hyp Ref Expression
1 lmcnp.3 ( 𝜑𝐹 ( ⇝𝑡𝐽 ) 𝑃 )
2 lmcn.4 ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
3 cntop1 ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top )
4 2 3 syl ( 𝜑𝐽 ∈ Top )
5 toptopon2 ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
6 4 5 sylib ( 𝜑𝐽 ∈ ( TopOn ‘ 𝐽 ) )
7 lmcl ( ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡𝐽 ) 𝑃 ) → 𝑃 𝐽 )
8 6 1 7 syl2anc ( 𝜑𝑃 𝐽 )
9 eqid 𝐽 = 𝐽
10 9 cncnpi ( ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑃 𝐽 ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) )
11 2 8 10 syl2anc ( 𝜑𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) )
12 1 11 lmcnp ( 𝜑 → ( 𝐺𝐹 ) ( ⇝𝑡𝐾 ) ( 𝐺𝑃 ) )