| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmcnp.3 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 2 |
|
lmcn.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
cntop1 |
⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 5 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 6 |
4 5
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 7 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 8 |
6 1 7
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
| 9 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 10 |
9
|
cncnpi |
⊢ ( ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑃 ∈ ∪ 𝐽 ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 11 |
2 8 10
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 12 |
1 11
|
lmcnp |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ) |