| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmcnp.3 |
|- ( ph -> F ( ~~>t ` J ) P ) |
| 2 |
|
lmcn.4 |
|- ( ph -> G e. ( J Cn K ) ) |
| 3 |
|
cntop1 |
|- ( G e. ( J Cn K ) -> J e. Top ) |
| 4 |
2 3
|
syl |
|- ( ph -> J e. Top ) |
| 5 |
|
toptopon2 |
|- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
| 6 |
4 5
|
sylib |
|- ( ph -> J e. ( TopOn ` U. J ) ) |
| 7 |
|
lmcl |
|- ( ( J e. ( TopOn ` U. J ) /\ F ( ~~>t ` J ) P ) -> P e. U. J ) |
| 8 |
6 1 7
|
syl2anc |
|- ( ph -> P e. U. J ) |
| 9 |
|
eqid |
|- U. J = U. J |
| 10 |
9
|
cncnpi |
|- ( ( G e. ( J Cn K ) /\ P e. U. J ) -> G e. ( ( J CnP K ) ` P ) ) |
| 11 |
2 8 10
|
syl2anc |
|- ( ph -> G e. ( ( J CnP K ) ` P ) ) |
| 12 |
1 11
|
lmcnp |
|- ( ph -> ( G o. F ) ( ~~>t ` K ) ( G ` P ) ) |