| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmcnp.3 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 2 |
|
lmcnp.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 4 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 5 |
3 4
|
cnpf |
⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 7 |
|
cnptop1 |
⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 12 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 13 |
10 11 12
|
lmbr2 |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) ) |
| 14 |
1 13
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
| 15 |
14
|
simp1d |
⊢ ( 𝜑 → 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ) |
| 16 |
8
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
| 17 |
|
cnex |
⊢ ℂ ∈ V |
| 18 |
|
elpm2g |
⊢ ( ( ∪ 𝐽 ∈ V ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ ) ) ) |
| 19 |
16 17 18
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ ) ) ) |
| 20 |
15 19
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ ) ) |
| 21 |
20
|
simpld |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ) |
| 22 |
|
fco |
⊢ ( ( 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ) → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ∪ 𝐾 ) |
| 23 |
6 21 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ∪ 𝐾 ) |
| 24 |
23
|
ffdmd |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : dom ( 𝐺 ∘ 𝐹 ) ⟶ ∪ 𝐾 ) |
| 25 |
23
|
fdmd |
⊢ ( 𝜑 → dom ( 𝐺 ∘ 𝐹 ) = dom 𝐹 ) |
| 26 |
20
|
simprd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℂ ) |
| 27 |
25 26
|
eqsstrd |
⊢ ( 𝜑 → dom ( 𝐺 ∘ 𝐹 ) ⊆ ℂ ) |
| 28 |
|
cnptop2 |
⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐾 ∈ Top ) |
| 29 |
2 28
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 30 |
29
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐾 ∈ V ) |
| 31 |
|
elpm2g |
⊢ ( ( ∪ 𝐾 ∈ V ∧ ℂ ∈ V ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ↔ ( ( 𝐺 ∘ 𝐹 ) : dom ( 𝐺 ∘ 𝐹 ) ⟶ ∪ 𝐾 ∧ dom ( 𝐺 ∘ 𝐹 ) ⊆ ℂ ) ) ) |
| 32 |
30 17 31
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ↔ ( ( 𝐺 ∘ 𝐹 ) : dom ( 𝐺 ∘ 𝐹 ) ⟶ ∪ 𝐾 ∧ dom ( 𝐺 ∘ 𝐹 ) ⊆ ℂ ) ) ) |
| 33 |
24 27 32
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ) |
| 34 |
14
|
simp2d |
⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
| 35 |
6 34
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑃 ) ∈ ∪ 𝐾 ) |
| 36 |
14
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 38 |
|
cnpimaex |
⊢ ( ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 39 |
38
|
3expb |
⊢ ( ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 40 |
2 39
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 41 |
|
r19.29 |
⊢ ( ( ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 42 |
|
pm3.45 |
⊢ ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 44 |
43
|
reximi |
⊢ ( ∃ 𝑣 ∈ 𝐽 ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 45 |
41 44
|
syl |
⊢ ( ( ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 46 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 47 |
46
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝐺 Fn ∪ 𝐽 ) |
| 48 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑣 ∈ 𝐽 ) |
| 49 |
|
elssuni |
⊢ ( 𝑣 ∈ 𝐽 → 𝑣 ⊆ ∪ 𝐽 ) |
| 50 |
48 49
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑣 ⊆ ∪ 𝐽 ) |
| 51 |
|
fnfvima |
⊢ ( ( 𝐺 Fn ∪ 𝐽 ∧ 𝑣 ⊆ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) |
| 52 |
51
|
3expia |
⊢ ( ( 𝐺 Fn ∪ 𝐽 ∧ 𝑣 ⊆ ∪ 𝐽 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 53 |
47 50 52
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 54 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ) |
| 55 |
|
fvco3 |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ∪ 𝐽 ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 56 |
54 55
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 57 |
56
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ( 𝐺 “ 𝑣 ) ↔ ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 58 |
53 57
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ( 𝐺 “ 𝑣 ) ) ) |
| 59 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) |
| 60 |
59
|
sseld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ ( 𝐺 “ 𝑣 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 61 |
58 60
|
syld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 62 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑘 ∈ dom 𝐹 ) |
| 63 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → dom ( 𝐺 ∘ 𝐹 ) = dom 𝐹 ) |
| 64 |
62 63
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ) |
| 65 |
61 64
|
jctild |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 → ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 66 |
65
|
expimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 67 |
66
|
ralimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 68 |
67
|
reximdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 69 |
68
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐺 “ 𝑣 ) ⊆ 𝑢 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 70 |
69
|
impcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 71 |
70
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ 𝐽 ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 72 |
45 71
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 73 |
37 40 72
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 74 |
73
|
expr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 75 |
74
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐾 ( ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 76 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 77 |
29 76
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 78 |
77 11 12
|
lmbr2 |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝐾 ↑pm ℂ ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ ∪ 𝐾 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐺 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 79 |
33 35 75 78
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ) |