Metamath Proof Explorer


Theorem lmcnp

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)

Ref Expression
Hypotheses lmcnp.3 φ F t J P
lmcnp.4 φ G J CnP K P
Assertion lmcnp φ G F t K G P

Proof

Step Hyp Ref Expression
1 lmcnp.3 φ F t J P
2 lmcnp.4 φ G J CnP K P
3 eqid J = J
4 eqid K = K
5 3 4 cnpf G J CnP K P G : J K
6 2 5 syl φ G : J K
7 cnptop1 G J CnP K P J Top
8 2 7 syl φ J Top
9 toptopon2 J Top J TopOn J
10 8 9 sylib φ J TopOn J
11 nnuz = 1
12 1zzd φ 1
13 10 11 12 lmbr2 φ F t J P F J 𝑝𝑚 P J v J P v j k j k dom F F k v
14 1 13 mpbid φ F J 𝑝𝑚 P J v J P v j k j k dom F F k v
15 14 simp1d φ F J 𝑝𝑚
16 8 uniexd φ J V
17 cnex V
18 elpm2g J V V F J 𝑝𝑚 F : dom F J dom F
19 16 17 18 sylancl φ F J 𝑝𝑚 F : dom F J dom F
20 15 19 mpbid φ F : dom F J dom F
21 20 simpld φ F : dom F J
22 fco G : J K F : dom F J G F : dom F K
23 6 21 22 syl2anc φ G F : dom F K
24 23 ffdmd φ G F : dom G F K
25 23 fdmd φ dom G F = dom F
26 20 simprd φ dom F
27 25 26 eqsstrd φ dom G F
28 cnptop2 G J CnP K P K Top
29 2 28 syl φ K Top
30 29 uniexd φ K V
31 elpm2g K V V G F K 𝑝𝑚 G F : dom G F K dom G F
32 30 17 31 sylancl φ G F K 𝑝𝑚 G F : dom G F K dom G F
33 24 27 32 mpbir2and φ G F K 𝑝𝑚
34 14 simp2d φ P J
35 6 34 ffvelrnd φ G P K
36 14 simp3d φ v J P v j k j k dom F F k v
37 36 adantr φ u K G P u v J P v j k j k dom F F k v
38 cnpimaex G J CnP K P u K G P u v J P v G v u
39 38 3expb G J CnP K P u K G P u v J P v G v u
40 2 39 sylan φ u K G P u v J P v G v u
41 r19.29 v J P v j k j k dom F F k v v J P v G v u v J P v j k j k dom F F k v P v G v u
42 pm3.45 P v j k j k dom F F k v P v G v u j k j k dom F F k v G v u
43 42 imp P v j k j k dom F F k v P v G v u j k j k dom F F k v G v u
44 43 reximi v J P v j k j k dom F F k v P v G v u v J j k j k dom F F k v G v u
45 41 44 syl v J P v j k j k dom F F k v v J P v G v u v J j k j k dom F F k v G v u
46 6 ad3antrrr φ u K G P u v J G v u k dom F G : J K
47 46 ffnd φ u K G P u v J G v u k dom F G Fn J
48 simplrl φ u K G P u v J G v u k dom F v J
49 elssuni v J v J
50 48 49 syl φ u K G P u v J G v u k dom F v J
51 fnfvima G Fn J v J F k v G F k G v
52 51 3expia G Fn J v J F k v G F k G v
53 47 50 52 syl2anc φ u K G P u v J G v u k dom F F k v G F k G v
54 21 ad2antrr φ u K G P u v J G v u F : dom F J
55 fvco3 F : dom F J k dom F G F k = G F k
56 54 55 sylan φ u K G P u v J G v u k dom F G F k = G F k
57 56 eleq1d φ u K G P u v J G v u k dom F G F k G v G F k G v
58 53 57 sylibrd φ u K G P u v J G v u k dom F F k v G F k G v
59 simplrr φ u K G P u v J G v u k dom F G v u
60 59 sseld φ u K G P u v J G v u k dom F G F k G v G F k u
61 58 60 syld φ u K G P u v J G v u k dom F F k v G F k u
62 simpr φ u K G P u v J G v u k dom F k dom F
63 25 ad3antrrr φ u K G P u v J G v u k dom F dom G F = dom F
64 62 63 eleqtrrd φ u K G P u v J G v u k dom F k dom G F
65 61 64 jctild φ u K G P u v J G v u k dom F F k v k dom G F G F k u
66 65 expimpd φ u K G P u v J G v u k dom F F k v k dom G F G F k u
67 66 ralimdv φ u K G P u v J G v u k j k dom F F k v k j k dom G F G F k u
68 67 reximdv φ u K G P u v J G v u j k j k dom F F k v j k j k dom G F G F k u
69 68 expr φ u K G P u v J G v u j k j k dom F F k v j k j k dom G F G F k u
70 69 impcomd φ u K G P u v J j k j k dom F F k v G v u j k j k dom G F G F k u
71 70 rexlimdva φ u K G P u v J j k j k dom F F k v G v u j k j k dom G F G F k u
72 45 71 syl5 φ u K G P u v J P v j k j k dom F F k v v J P v G v u j k j k dom G F G F k u
73 37 40 72 mp2and φ u K G P u j k j k dom G F G F k u
74 73 expr φ u K G P u j k j k dom G F G F k u
75 74 ralrimiva φ u K G P u j k j k dom G F G F k u
76 toptopon2 K Top K TopOn K
77 29 76 sylib φ K TopOn K
78 77 11 12 lmbr2 φ G F t K G P G F K 𝑝𝑚 G P K u K G P u j k j k dom G F G F k u
79 33 35 75 78 mpbir3and φ G F t K G P