Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of Kreyszig p. 26. (Contributed by NM, 31-Jan-2008) (Proof shortened by Mario Carneiro, 1-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmmo.1 | |
|
lmmo.4 | |
||
lmmo.5 | |
||
Assertion | lmmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmmo.1 | |
|
2 | lmmo.4 | |
|
3 | lmmo.5 | |
|
4 | an4 | |
|
5 | nnuz | |
|
6 | simprr | |
|
7 | 1zzd | |
|
8 | 2 | adantr | |
9 | simprl | |
|
10 | 5 6 7 8 9 | lmcvg | |
11 | 10 | ex | |
12 | simprr | |
|
13 | 1zzd | |
|
14 | 3 | adantr | |
15 | simprl | |
|
16 | 5 12 13 14 15 | lmcvg | |
17 | 16 | ex | |
18 | 11 17 | anim12d | |
19 | 5 | rexanuz2 | |
20 | nnz | |
|
21 | uzid | |
|
22 | ne0i | |
|
23 | 20 21 22 | 3syl | |
24 | r19.2z | |
|
25 | elin | |
|
26 | n0i | |
|
27 | 25 26 | sylbir | |
28 | 27 | rexlimivw | |
29 | 24 28 | syl | |
30 | 23 29 | sylan | |
31 | 30 | rexlimiva | |
32 | 19 31 | sylbir | |
33 | 18 32 | syl6 | |
34 | 4 33 | biimtrid | |
35 | 34 | expdimp | |
36 | imnan | |
|
37 | 35 36 | sylib | |
38 | df-3an | |
|
39 | 37 38 | sylnibr | |
40 | 39 | anassrs | |
41 | 40 | nrexdv | |
42 | 41 | nrexdv | |
43 | haustop | |
|
44 | 1 43 | syl | |
45 | toptopon2 | |
|
46 | 44 45 | sylib | |
47 | lmcl | |
|
48 | 46 2 47 | syl2anc | |
49 | lmcl | |
|
50 | 46 3 49 | syl2anc | |
51 | eqid | |
|
52 | 51 | hausnei | |
53 | 52 | 3exp2 | |
54 | 1 48 50 53 | syl3c | |
55 | 54 | necon1bd | |
56 | 42 55 | mpd | |