Metamath Proof Explorer


Theorem lmmo

Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of Kreyszig p. 26. (Contributed by NM, 31-Jan-2008) (Proof shortened by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmo.1 φJHaus
lmmo.4 φFtJA
lmmo.5 φFtJB
Assertion lmmo φA=B

Proof

Step Hyp Ref Expression
1 lmmo.1 φJHaus
2 lmmo.4 φFtJA
3 lmmo.5 φFtJB
4 an4 xJyJAxByxJAxyJBy
5 nnuz =1
6 simprr φxJAxAx
7 1zzd φxJAx1
8 2 adantr φxJAxFtJA
9 simprl φxJAxxJ
10 5 6 7 8 9 lmcvg φxJAxjkjFkx
11 10 ex φxJAxjkjFkx
12 simprr φyJByBy
13 1zzd φyJBy1
14 3 adantr φyJByFtJB
15 simprl φyJByyJ
16 5 12 13 14 15 lmcvg φyJByjkjFky
17 16 ex φyJByjkjFky
18 11 17 anim12d φxJAxyJByjkjFkxjkjFky
19 5 rexanuz2 jkjFkxFkyjkjFkxjkjFky
20 nnz jj
21 uzid jjj
22 ne0i jjj
23 20 21 22 3syl jj
24 r19.2z jkjFkxFkykjFkxFky
25 elin FkxyFkxFky
26 n0i Fkxy¬xy=
27 25 26 sylbir FkxFky¬xy=
28 27 rexlimivw kjFkxFky¬xy=
29 24 28 syl jkjFkxFky¬xy=
30 23 29 sylan jkjFkxFky¬xy=
31 30 rexlimiva jkjFkxFky¬xy=
32 19 31 sylbir jkjFkxjkjFky¬xy=
33 18 32 syl6 φxJAxyJBy¬xy=
34 4 33 biimtrid φxJyJAxBy¬xy=
35 34 expdimp φxJyJAxBy¬xy=
36 imnan AxBy¬xy=¬AxByxy=
37 35 36 sylib φxJyJ¬AxByxy=
38 df-3an AxByxy=AxByxy=
39 37 38 sylnibr φxJyJ¬AxByxy=
40 39 anassrs φxJyJ¬AxByxy=
41 40 nrexdv φxJ¬yJAxByxy=
42 41 nrexdv φ¬xJyJAxByxy=
43 haustop JHausJTop
44 1 43 syl φJTop
45 toptopon2 JTopJTopOnJ
46 44 45 sylib φJTopOnJ
47 lmcl JTopOnJFtJAAJ
48 46 2 47 syl2anc φAJ
49 lmcl JTopOnJFtJBBJ
50 46 3 49 syl2anc φBJ
51 eqid J=J
52 51 hausnei JHausAJBJABxJyJAxByxy=
53 52 3exp2 JHausAJBJABxJyJAxByxy=
54 1 48 50 53 syl3c φABxJyJAxByxy=
55 54 necon1bd φ¬xJyJAxByxy=A=B
56 42 55 mpd φA=B