Metamath Proof Explorer


Theorem hausnei

Description: Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007)

Ref Expression
Hypothesis ist0.1 X=J
Assertion hausnei JHausPXQXPQnJmJPnQmnm=

Proof

Step Hyp Ref Expression
1 ist0.1 X=J
2 1 ishaus JHausJTopxXyXxynJmJxnymnm=
3 2 simprbi JHausxXyXxynJmJxnymnm=
4 neeq1 x=PxyPy
5 eleq1 x=PxnPn
6 5 3anbi1d x=Pxnymnm=Pnymnm=
7 6 2rexbidv x=PnJmJxnymnm=nJmJPnymnm=
8 4 7 imbi12d x=PxynJmJxnymnm=PynJmJPnymnm=
9 neeq2 y=QPyPQ
10 eleq1 y=QymQm
11 10 3anbi2d y=QPnymnm=PnQmnm=
12 11 2rexbidv y=QnJmJPnymnm=nJmJPnQmnm=
13 9 12 imbi12d y=QPynJmJPnymnm=PQnJmJPnQmnm=
14 8 13 rspc2v PXQXxXyXxynJmJxnymnm=PQnJmJPnQmnm=
15 3 14 syl5 PXQXJHausPQnJmJPnQmnm=
16 15 ex PXQXJHausPQnJmJPnQmnm=
17 16 com3r JHausPXQXPQnJmJPnQmnm=
18 17 3imp2 JHausPXQXPQnJmJPnQmnm=